99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Spatial Networks for Locations

時間:2024-02-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Background
Spatial Networks for Locations
 Locations are connected via roads (we assume traders can travel in both
directions!)  These locations form a spatial network.  As traders used horses for travelling, they couldn’t travel too far!
Pottery Trade
Pottery trade was very active at that times. Each location had its own supply and demandfor pottery. The supply and demand were communicated by traders who also formed their
own networks. They also potentially communicated the prices, but in these project wewill
disregard this information.
Social Networks for Traders
Traders living in some locations know each other and exchange information about supplyand demand via postal services. These traders for a social network.
How to Represent Networks
Each network can be presented as a graph. In this project, we will focus on undirectedgraphs: both social and spatial networks can be represented as graphs:
1. Spatial networks: nodes correspond to locations, and edges —to roads betweenthem (both directions)
2. Social networks: nodes correspond to traders, and edges connect those who
know each other (communicate)
Networks/graphs can be very different!
Project Questions
1. Represent road maps and trader networks as graphs
2. Find the shortest path between any two locations (return the shortest path andthedistance)
3. (Static traders) Find the best trading options for a particular trader residing in aparticular location. Core concepts: Itineraries
Itineraries provide the basis for our spatial network. They are provided as a list of (L1,L2, distance) tuples; listed in any order. L1 and L2 are provided as strings, distance is an integer number (miles).
In the example:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
Supply and Demand of Goods (Pottery)
Each location has its own supply and demand in pottery: supply is provided as a positivenumber, demand — as a negative. Locations with the highest demand should be servedfirst. Assume both numbers are integers. This is provided as a dictionary (in no particular order)
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}Trader Locations
Traders reside in some but not all locations. Only locations where traders are present cantrade. Each location can have maximum a single trader. Traders are provided as strings.
Trader locations are provided as a dictionary (in no particular order). In the example:
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
Social network of Traders
Traders also form a social network. A trader only trades within their own network
(considers friends only). Traders also have access to supplies and demands in the
corresponding locations. Trader friendships are provided as a list of tuples (in no particular order):
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]Q1
Write a function create_spatial_network(itineraries) that takes itineraries (a list of
tuples) and returns for each location its neighbors and distances to them. A location is
considered to be a neighbour of another location if it can be reached by a single road (oneedge).
Input:
**3; itineraries: a list of tuples, where each tuple is of the
form (location1, location2, distance). location1 and location2 are the stringlabels for these locations and distance is an integer. Your function should return a list of tuples, where each tuple is of the
form (location, neighbours). neighbours should be of the
form [(neighbour1, distance1), (neighbour2, distance2), ...] and be sorted by their
distances (in the increasing order). If two or more neighbors have the same distance tothe location, tie-break by alphanumeric order on their labels. Note that in addition to the neighbors, the overall list has to be sorted. You may assume: **3; Distances are non-negative integer values
**3; Inputs are correctly formatted data structures and types
**3; There are no duplicate entries itineraries, and in each neighbor pair only appear
once (i.e. no [('L1', 'L2', 20), ('L2', 'L1', 20)])
Here is a diagram of an example network:
For the network above, this would be a possible itineraries and the function should
return the following:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
>>> create_spatial_network(itineraries)
[('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1', 20)]), ('L3', [('L2',10)]),('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4', 5), ('L6', 6), ('L8', 22)]),('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8', [('L4', 20), ('L5', 22)])]A different example (not pictured):
>>> itineraries = [('L4', 'L1', 2), ('L3', 'L1', 5), ('L1', 'L5', 5), ('L2', 'L5',1)]>>> create_spatial_network(itineraries)
[('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5', 1)]), ('L3', [('L1',5)]),('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
Q2
Write a function sort_demand_supply(status) that takes a dictionary of demands andsupplies and returns the information as a list of tuples sorted by the value so that locationswith greatest demands (the most negative number) are provided first.
Input: **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. Your function should return a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their labels. You may assume: **3; Inputs are correctly formatted data structures and types
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}>>> sort_demand_supply(status)
[('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6', 10), ('L8',10),('L1', 50)]
Another example:
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> sort_demand_supply(status)
[('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4', 100)]
Q3
Write a function create_social_network(traders) that takes traders, a list of tuples
specifing trader connections (edges in the trader social network) and returns a list
containing (trader, direct_connections) for each trader in traders.
Input: **3; traders: a list of tuples specifing trader connections (edges in the trader social
network). Each tuple is of the
form (trader1, trader2) where trader1 and trader2 are string names of
each trader.
Your function should return list of tuples in alphanumeric order of trader name, where
each tuple is of the form (trader, direct_connections), and direct_connections is analphanumerically sorted list of that trader's direct connections (i.e. there exists an edgebetween them in the trader social network). You may assume: **3; Inputs are correctly formatted data structures and types. Just like Q1a, you don't
need to guard against something like [('T1', 'T2'), ('T2', 'T1')] or duplicate
entries.
The pictured example:
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]>>> create_social_network(traders)
[('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1', 'T5', 'T6']), ('T5', ['T2','T3']),('T6', ['T3'])]
Another example (not pictured):
>>> traders = [('T1', 'T5'), ('T2', 'T6'), ('T3', 'T7'), ('T4', 'T8'), ('T1', 'T6'),('T2', 'T7'), ('T3', 'T8'), ('T4', 'T5'), ('T1', 'T7'), ('T2', 'T8'), ('T3', 'T5'),('T4','T6')]
>>> create_social_network(traders)
[('T1', ['T5', 'T6', 'T7']), ('T2', ['T6', 'T7', 'T8']), ('T3', ['T5', 'T7', 'T8']),('T4', ['T5', 'T6', 'T8']), ('T5', ['T1', 'T3', 'T4']), ('T6', ['T1', 'T2', 'T4']),('T7',['T1', 'T2', 'T3']), ('T8', ['T2', 'T3', 'T4'])]
Q4
Write a function shortest_path(spatial_network, source, target, max_bound) that
takes a spatial network, initial (source) location, target location and the maximumdistance(that a trader located in the initial location can travel) as its input and returns a tuple withashortest path and its total distance.
Input:  spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a.  source: the location label (string) of the initial location. **3; target: the location label (string) of the target location. **3; max_bound: an integer (or None) that specifies the maximum total distance that
your trader can travel. If max_bound is None then always return the path withminimum distance. Your function should return a tuple (path, total_distance), where path is a string of
each location label in the path separated by a - hyphen character, and total_distanceisthe total of the distances along the path.
If there's two paths with the same minimum total distance, choose the path with morelocations on it. If there's two paths with the same minimum total distance and they havethe same number of locations on the path then choose alphanumerically smaller pathstring.
If there is no path with a total distance within the max_bound then your function shouldreturn (None, None). You may assume:
 Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; The network is connected, so a path always exists, although it may not have atotal distance within the maximum bound.
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> shortest_path(spatial_network, 'L1', 'L3', 50)
('L**L2-L3', 30)
>>> shortest_path(spatial_network, 'L1', 'L3', 0)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', 10)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', None)
('L**L2-L3', 30)
Q5
In this question you will be writing a
function trade(spatial_network, status_sorted, trader_locations, trader_network, max_dist_per_unit=3) that makes a single trade.
Input:
**3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status_sorted: a list of tuples, where each tuple is of the
form (location, demand_supply), and the list is sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply) with ties brokenalphanumerically on location label. This corresponds with the output of the
function you wrote for Q1b. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c. **3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. Your function should return a single trade as a
tuple (supplier_location, consumer_location, amount) where supplier_locationand consumer_location are location labels (strings) and amount is a positive integer. If notrade is possible return (None, None, None).
Traders from the locations with highest demand contact their social network asking for
help. Then they choose the contacts worth travelling to, based on distance and the
amount of supply there. The trade shoud be determined as follows:
1. Find the location with the highest demand, this will be the consumer location. 2. Find the trader at the consumer location (skip this location and go back to step1if
there are no traders at this location) and consider the trader's connections. 3. A supplier location can only supply to the consumer location if their status is
positive (i.e. they have items to supply) and can supply an amount up to this value(i.e. they can't supply so much that they result in having a demand for the itemthey are supplying). 4. If a supplier location is directly neighbouring by a single road (adjacent) to theconsumer location then the distance used is the direct distance between the twolocations, even if there exists a shorter route via other locations. If the supplier andconsumer are not adjacent then the shortest_path function should be used todetermine the distance. 5. The trader will trade with the connection that has the highest amount of units tosupply, subject to meeting the max_dist_per_unit of the distance/units ratio. 6. Then if no trade is possible in this location, consider the next location. Return (None, None, None) if all locations have been considered. You may assume: **3; Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; There will be at most one trader at any particular location.
Consider the spatial and trader network in the image above. With a
default max_dist_per_unit of 3, the trader will only consider travelling maximum3 milesfor each unit (one direction), i.e. they will agree to travel 6 miles for get 2 pottery units but
not a single one.
In the example, we have 'L4' as the location with the highest demand of 40 units
(demand_supply=-40) and the trader 'T3' who resides there. 'T3''s direct connectionsare ['T1', 'T5', 'T6']. We can't trade with 'T5' because at their location ('L7') there is
also demand for the items. We compare the units able to be supplied and the distance-units ratio for each potential
supplier: **3; T1:
o location: L1
o supply max: 50
o distance: 15
o so they could supply all 40 units that are demanded at L4
o distance/units = 15/40 = 0.375
**3; T6:
o location: L5
o supply max: 5
o distance: 5
o so they could supply 5 of the units that are demanded at L4
o distance/units = 5/5 = 1.0
Since T1 has the largest amount of units able to be supplied, and the distance/units ratiois below the maximum (3), this trade goes ahead and the function would
return ('L1', 'L4', 40). >>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status_sorted = [('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6',10), ('L8', 10), ('L1', 50)]
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L4', 40)
More examples:
>>> spatial_network = [('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5',1)]),('L3', [('L1', 5)]), ('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> status_sorted = [('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4',100)]>>> trader_locations = {'T1': 'L1', 'T2': 'L2'}
>>> trader_network = [('T1', ['T2']), ('T2', ['T1'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L2', 20)
>>> trade(spatial_network, status_sorted, trader_locations, trader_network,
max_dist_per_unit=0.001)
(None, None, None)
Q6
In this part you'll be using the trade() function from part 3a iteratively to determine thestatus after several trades. Write a
function trade_iteratively(num_iter, spatial_network, status, trader_locations, trader_network, max_dist_per_unit=3) that takes the number of iterations to perform,
the spatial network, status dictionary, trader locations dictionary, trader network, and
maximum distance per unit and returns a tuple containing the sorted status list
after num_iter trades along with a list of trades performed.
Input: **3; num_iter: the number of iterations to perform as an integer or None if the
iteration should continue until no further trades can be made. **3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c.
**3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. At each iteration, the next trade to be performed is determined by the process in part 3a. We strongly suggest using the provided trade() function to find this trade. Your functionshould update the status dictionary at each iteration. Your function should return a tuple (final_supply_sorted, trades) containing the sorteddemand-supply status after num_iter trades along with a list of trades performed. The final_supply_sorted should be a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their
labels. trades should be a list of each trade performed, where a trade is of the
form (supplier_location, consumer_location, amount) where supplier_locationandconsumer_location are location labels (strings) and amount is a positive integer. You may assume: Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values.  There will be at most one trader at any particular location.
In the example pictured, only one trade can occur:
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status = {'L1': 50, 'L2': -5, 'L4': -40, 'L3': 5, 'L5': 5, 'L8': 10, 'L6': 10,'L7':-30}
>>> trader_locations = {'T1': 'L1', 'T2': 'L3', 'T3': 'L4', 'T4': 'L8', 'T5': 'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade_iteratively(1, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])
>>> trade_iteratively(None, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])

請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE438、代做C/C++編程語言
  • 下一篇: cs400編程代寫、A03.FirstGit程序語言代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品一区二区免费不卡| 亚洲一区二区三区四区在线免费观看 | 中文字幕亚洲区| 男女视频一区二区| 久久色视频免费观看| 经典三级视频一区| 久久久不卡影院| 亚洲成人综合视频| 久久久一区二区三区捆绑**| 国模少妇一区二区三区| 欧美高清在线视频| 欧美女孩性生活视频| 日韩精品电影在线观看| 日韩一级视频免费观看在线| 中文字幕不卡在线播放| 暴力调教一区二区三区| 亚洲美女偷拍久久| 欧美精品在线视频| 91无套直看片红桃| 欧美一区二区在线免费播放| 久久66热re国产| 欧美人妖巨大在线| 国产精品99久久久久久似苏梦涵 | 极品少妇一区二区| 精品国产三级a在线观看| 韩国中文字幕2020精品| 中文字幕欧美日韩一区| 91久久精品日日躁夜夜躁欧美| 色婷婷av一区二区| 国产在线精品国自产拍免费| 中文字幕国产一区| 亚洲激情校园春色| 成人午夜私人影院| 欧美性受xxxx| 欧美久久婷婷综合色| 欧美日本免费一区二区三区| av激情成人网| 91视频观看视频| 色94色欧美sute亚洲线路二| 欧美午夜电影一区| 中文字幕第一区二区| 亚洲色图欧美偷拍| 亚洲精品大片www| 欧美激情艳妇裸体舞| 亚洲一本大道在线| 日本va欧美va精品发布| 一本大道综合伊人精品热热| 日韩福利视频导航| 《视频一区视频二区| 中文字幕不卡在线播放| 91精品国产综合久久国产大片| 成人av小说网| 一区二区三区**美女毛片| 精品人伦一区二区色婷婷| 久久99久久99精品免视看婷婷| 亚洲美女少妇撒尿| 国产精品日产欧美久久久久| 色综合中文字幕| 91视频在线看| 97精品视频在线观看自产线路二| 狠狠色综合播放一区二区| 国产原创一区二区| 免费美女久久99| 亚洲图片自拍偷拍| 亚洲欧美一区二区视频| 亚洲福利视频一区二区| 亚洲精品成人少妇| 1区2区3区欧美| 午夜欧美视频在线观看| 综合电影一区二区三区 | 亚洲一区二区欧美激情| 亚洲婷婷在线视频| 国产欧美一区在线| 日本一区二区免费在线| 欧美剧情片在线观看| 国产亚洲美州欧州综合国| 久久你懂得1024| 日韩久久久久久| 中文字幕一区二区三区乱码在线| 欧美激情一区二区三区不卡| 国产精品免费久久| 久久综合国产精品| 亚洲国产精品一区二区尤物区| 亚洲一区二区三区小说| 天堂影院一区二区| 日本一道高清亚洲日美韩| 久久精品国产在热久久| 亚洲国产婷婷综合在线精品| 韩国v欧美v亚洲v日本v| 成人一二三区视频| 成人av在线播放网站| 国产91丝袜在线18| 成人高清免费在线播放| 色悠悠亚洲一区二区| 欧美日本韩国一区| 国产综合色在线视频区| 色综合天天性综合| 亚洲三级久久久| 欧美日韩不卡在线| 亚洲国产成人va在线观看天堂| 91日韩在线专区| 久久嫩草精品久久久精品| 成人免费视频网站在线观看| 久久婷婷成人综合色| 久久精品国产成人一区二区三区| 久久久综合网站| 国产福利一区在线观看| 国产午夜亚洲精品不卡| 蜜桃av噜噜一区二区三区小说| 欧美日韩精品欧美日韩精品一综合| 亚洲日本电影在线| 色国产精品一区在线观看| 久久久91精品国产一区二区三区| 91亚洲精华国产精华精华液| 亚洲美女屁股眼交| 日本电影亚洲天堂一区| 国产主播一区二区三区| 欧美激情在线一区二区三区| 成+人+亚洲+综合天堂| 精品黑人一区二区三区久久| 成人av高清在线| 亚洲欧美中日韩| 欧美性猛交xxxx黑人交| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久综合九色综合97婷婷女人| 久久精品一区八戒影视| 99久久伊人久久99| 成人网在线播放| 亚洲精品日韩专区silk| 久久欧美中文字幕| 欧美一区二区三区不卡| 欧美在线观看一二区| 国产精品一级片在线观看| 免费成人美女在线观看| 午夜精品福利一区二区三区av| **性色生活片久久毛片| 国产日韩亚洲欧美综合| 欧美一区二区三区播放老司机| 91福利区一区二区三区| av亚洲精华国产精华| 国产一区二区三区电影在线观看| 婷婷开心激情综合| 国产精品456| 久久综合九色综合97_久久久 | 欧美在线你懂的| 日本美女视频一区二区| 国产欧美精品区一区二区三区 | 欧美激情一区三区| 一本色道久久综合亚洲aⅴ蜜桃| 午夜视频在线观看一区二区三区 | 国产成人精品三级麻豆| 亚洲女同女同女同女同女同69| 国产成人av影院| 欧美少妇一区二区| 一区二区三区在线视频观看| 欧美视频在线一区| 精品中文字幕一区二区| 国产精品国产a| 欧美日韩在线播放一区| 精品一区二区在线看| 中文字幕日韩av资源站| 国产精品一区二区x88av| 久久―日本道色综合久久| 91亚洲永久精品| 蜜臀av性久久久久蜜臀av麻豆| 国产精品激情偷乱一区二区∴| 欧美日韩免费一区二区三区 | 亚洲欧洲av在线| 日韩一区二区三区电影在线观看| 成人av网站免费| 精品午夜一区二区三区在线观看| 亚洲自拍偷拍av| 国产精品国产三级国产普通话99| 精品奇米国产一区二区三区| 欧美三级乱人伦电影| 99精品久久久久久| 国产福利一区在线| 国内成人精品2018免费看| 天天综合天天综合色| 亚洲欧美日韩在线| 中文字幕av资源一区| 久久精品亚洲乱码伦伦中文| 日韩欧美国产综合在线一区二区三区| 一本色道亚洲精品aⅴ| 成人久久久精品乱码一区二区三区| 日韩av高清在线观看| 亚洲国产毛片aaaaa无费看| 日韩美女视频一区| 国产偷v国产偷v亚洲高清 | 精品成人一区二区| 欧美一区二区在线免费观看| 欧美夫妻性生活| 欧美精品免费视频| 91精品国产美女浴室洗澡无遮挡| 欧美精品视频www在线观看| 欧美日本韩国一区二区三区视频| 欧美日韩精品三区| 91精品中文字幕一区二区三区| 在线播放国产精品二区一二区四区| 欧美日韩一区高清|