99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Spatial Networks for Locations

時間:2024-02-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Background
Spatial Networks for Locations
 Locations are connected via roads (we assume traders can travel in both
directions!)  These locations form a spatial network.  As traders used horses for travelling, they couldn’t travel too far!
Pottery Trade
Pottery trade was very active at that times. Each location had its own supply and demandfor pottery. The supply and demand were communicated by traders who also formed their
own networks. They also potentially communicated the prices, but in these project wewill
disregard this information.
Social Networks for Traders
Traders living in some locations know each other and exchange information about supplyand demand via postal services. These traders for a social network.
How to Represent Networks
Each network can be presented as a graph. In this project, we will focus on undirectedgraphs: both social and spatial networks can be represented as graphs:
1. Spatial networks: nodes correspond to locations, and edges —to roads betweenthem (both directions)
2. Social networks: nodes correspond to traders, and edges connect those who
know each other (communicate)
Networks/graphs can be very different!
Project Questions
1. Represent road maps and trader networks as graphs
2. Find the shortest path between any two locations (return the shortest path andthedistance)
3. (Static traders) Find the best trading options for a particular trader residing in aparticular location. Core concepts: Itineraries
Itineraries provide the basis for our spatial network. They are provided as a list of (L1,L2, distance) tuples; listed in any order. L1 and L2 are provided as strings, distance is an integer number (miles).
In the example:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
Supply and Demand of Goods (Pottery)
Each location has its own supply and demand in pottery: supply is provided as a positivenumber, demand — as a negative. Locations with the highest demand should be servedfirst. Assume both numbers are integers. This is provided as a dictionary (in no particular order)
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}Trader Locations
Traders reside in some but not all locations. Only locations where traders are present cantrade. Each location can have maximum a single trader. Traders are provided as strings.
Trader locations are provided as a dictionary (in no particular order). In the example:
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
Social network of Traders
Traders also form a social network. A trader only trades within their own network
(considers friends only). Traders also have access to supplies and demands in the
corresponding locations. Trader friendships are provided as a list of tuples (in no particular order):
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]Q1
Write a function create_spatial_network(itineraries) that takes itineraries (a list of
tuples) and returns for each location its neighbors and distances to them. A location is
considered to be a neighbour of another location if it can be reached by a single road (oneedge).
Input:
**3; itineraries: a list of tuples, where each tuple is of the
form (location1, location2, distance). location1 and location2 are the stringlabels for these locations and distance is an integer. Your function should return a list of tuples, where each tuple is of the
form (location, neighbours). neighbours should be of the
form [(neighbour1, distance1), (neighbour2, distance2), ...] and be sorted by their
distances (in the increasing order). If two or more neighbors have the same distance tothe location, tie-break by alphanumeric order on their labels. Note that in addition to the neighbors, the overall list has to be sorted. You may assume: **3; Distances are non-negative integer values
**3; Inputs are correctly formatted data structures and types
**3; There are no duplicate entries itineraries, and in each neighbor pair only appear
once (i.e. no [('L1', 'L2', 20), ('L2', 'L1', 20)])
Here is a diagram of an example network:
For the network above, this would be a possible itineraries and the function should
return the following:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
>>> create_spatial_network(itineraries)
[('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1', 20)]), ('L3', [('L2',10)]),('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4', 5), ('L6', 6), ('L8', 22)]),('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8', [('L4', 20), ('L5', 22)])]A different example (not pictured):
>>> itineraries = [('L4', 'L1', 2), ('L3', 'L1', 5), ('L1', 'L5', 5), ('L2', 'L5',1)]>>> create_spatial_network(itineraries)
[('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5', 1)]), ('L3', [('L1',5)]),('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
Q2
Write a function sort_demand_supply(status) that takes a dictionary of demands andsupplies and returns the information as a list of tuples sorted by the value so that locationswith greatest demands (the most negative number) are provided first.
Input: **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. Your function should return a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their labels. You may assume: **3; Inputs are correctly formatted data structures and types
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}>>> sort_demand_supply(status)
[('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6', 10), ('L8',10),('L1', 50)]
Another example:
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> sort_demand_supply(status)
[('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4', 100)]
Q3
Write a function create_social_network(traders) that takes traders, a list of tuples
specifing trader connections (edges in the trader social network) and returns a list
containing (trader, direct_connections) for each trader in traders.
Input: **3; traders: a list of tuples specifing trader connections (edges in the trader social
network). Each tuple is of the
form (trader1, trader2) where trader1 and trader2 are string names of
each trader.
Your function should return list of tuples in alphanumeric order of trader name, where
each tuple is of the form (trader, direct_connections), and direct_connections is analphanumerically sorted list of that trader's direct connections (i.e. there exists an edgebetween them in the trader social network). You may assume: **3; Inputs are correctly formatted data structures and types. Just like Q1a, you don't
need to guard against something like [('T1', 'T2'), ('T2', 'T1')] or duplicate
entries.
The pictured example:
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]>>> create_social_network(traders)
[('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1', 'T5', 'T6']), ('T5', ['T2','T3']),('T6', ['T3'])]
Another example (not pictured):
>>> traders = [('T1', 'T5'), ('T2', 'T6'), ('T3', 'T7'), ('T4', 'T8'), ('T1', 'T6'),('T2', 'T7'), ('T3', 'T8'), ('T4', 'T5'), ('T1', 'T7'), ('T2', 'T8'), ('T3', 'T5'),('T4','T6')]
>>> create_social_network(traders)
[('T1', ['T5', 'T6', 'T7']), ('T2', ['T6', 'T7', 'T8']), ('T3', ['T5', 'T7', 'T8']),('T4', ['T5', 'T6', 'T8']), ('T5', ['T1', 'T3', 'T4']), ('T6', ['T1', 'T2', 'T4']),('T7',['T1', 'T2', 'T3']), ('T8', ['T2', 'T3', 'T4'])]
Q4
Write a function shortest_path(spatial_network, source, target, max_bound) that
takes a spatial network, initial (source) location, target location and the maximumdistance(that a trader located in the initial location can travel) as its input and returns a tuple withashortest path and its total distance.
Input:  spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a.  source: the location label (string) of the initial location. **3; target: the location label (string) of the target location. **3; max_bound: an integer (or None) that specifies the maximum total distance that
your trader can travel. If max_bound is None then always return the path withminimum distance. Your function should return a tuple (path, total_distance), where path is a string of
each location label in the path separated by a - hyphen character, and total_distanceisthe total of the distances along the path.
If there's two paths with the same minimum total distance, choose the path with morelocations on it. If there's two paths with the same minimum total distance and they havethe same number of locations on the path then choose alphanumerically smaller pathstring.
If there is no path with a total distance within the max_bound then your function shouldreturn (None, None). You may assume:
 Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; The network is connected, so a path always exists, although it may not have atotal distance within the maximum bound.
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> shortest_path(spatial_network, 'L1', 'L3', 50)
('L**L2-L3', 30)
>>> shortest_path(spatial_network, 'L1', 'L3', 0)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', 10)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', None)
('L**L2-L3', 30)
Q5
In this question you will be writing a
function trade(spatial_network, status_sorted, trader_locations, trader_network, max_dist_per_unit=3) that makes a single trade.
Input:
**3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status_sorted: a list of tuples, where each tuple is of the
form (location, demand_supply), and the list is sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply) with ties brokenalphanumerically on location label. This corresponds with the output of the
function you wrote for Q1b. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c. **3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. Your function should return a single trade as a
tuple (supplier_location, consumer_location, amount) where supplier_locationand consumer_location are location labels (strings) and amount is a positive integer. If notrade is possible return (None, None, None).
Traders from the locations with highest demand contact their social network asking for
help. Then they choose the contacts worth travelling to, based on distance and the
amount of supply there. The trade shoud be determined as follows:
1. Find the location with the highest demand, this will be the consumer location. 2. Find the trader at the consumer location (skip this location and go back to step1if
there are no traders at this location) and consider the trader's connections. 3. A supplier location can only supply to the consumer location if their status is
positive (i.e. they have items to supply) and can supply an amount up to this value(i.e. they can't supply so much that they result in having a demand for the itemthey are supplying). 4. If a supplier location is directly neighbouring by a single road (adjacent) to theconsumer location then the distance used is the direct distance between the twolocations, even if there exists a shorter route via other locations. If the supplier andconsumer are not adjacent then the shortest_path function should be used todetermine the distance. 5. The trader will trade with the connection that has the highest amount of units tosupply, subject to meeting the max_dist_per_unit of the distance/units ratio. 6. Then if no trade is possible in this location, consider the next location. Return (None, None, None) if all locations have been considered. You may assume: **3; Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; There will be at most one trader at any particular location.
Consider the spatial and trader network in the image above. With a
default max_dist_per_unit of 3, the trader will only consider travelling maximum3 milesfor each unit (one direction), i.e. they will agree to travel 6 miles for get 2 pottery units but
not a single one.
In the example, we have 'L4' as the location with the highest demand of 40 units
(demand_supply=-40) and the trader 'T3' who resides there. 'T3''s direct connectionsare ['T1', 'T5', 'T6']. We can't trade with 'T5' because at their location ('L7') there is
also demand for the items. We compare the units able to be supplied and the distance-units ratio for each potential
supplier: **3; T1:
o location: L1
o supply max: 50
o distance: 15
o so they could supply all 40 units that are demanded at L4
o distance/units = 15/40 = 0.375
**3; T6:
o location: L5
o supply max: 5
o distance: 5
o so they could supply 5 of the units that are demanded at L4
o distance/units = 5/5 = 1.0
Since T1 has the largest amount of units able to be supplied, and the distance/units ratiois below the maximum (3), this trade goes ahead and the function would
return ('L1', 'L4', 40). >>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status_sorted = [('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6',10), ('L8', 10), ('L1', 50)]
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L4', 40)
More examples:
>>> spatial_network = [('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5',1)]),('L3', [('L1', 5)]), ('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> status_sorted = [('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4',100)]>>> trader_locations = {'T1': 'L1', 'T2': 'L2'}
>>> trader_network = [('T1', ['T2']), ('T2', ['T1'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L2', 20)
>>> trade(spatial_network, status_sorted, trader_locations, trader_network,
max_dist_per_unit=0.001)
(None, None, None)
Q6
In this part you'll be using the trade() function from part 3a iteratively to determine thestatus after several trades. Write a
function trade_iteratively(num_iter, spatial_network, status, trader_locations, trader_network, max_dist_per_unit=3) that takes the number of iterations to perform,
the spatial network, status dictionary, trader locations dictionary, trader network, and
maximum distance per unit and returns a tuple containing the sorted status list
after num_iter trades along with a list of trades performed.
Input: **3; num_iter: the number of iterations to perform as an integer or None if the
iteration should continue until no further trades can be made. **3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c.
**3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. At each iteration, the next trade to be performed is determined by the process in part 3a. We strongly suggest using the provided trade() function to find this trade. Your functionshould update the status dictionary at each iteration. Your function should return a tuple (final_supply_sorted, trades) containing the sorteddemand-supply status after num_iter trades along with a list of trades performed. The final_supply_sorted should be a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their
labels. trades should be a list of each trade performed, where a trade is of the
form (supplier_location, consumer_location, amount) where supplier_locationandconsumer_location are location labels (strings) and amount is a positive integer. You may assume: Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values.  There will be at most one trader at any particular location.
In the example pictured, only one trade can occur:
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status = {'L1': 50, 'L2': -5, 'L4': -40, 'L3': 5, 'L5': 5, 'L8': 10, 'L6': 10,'L7':-30}
>>> trader_locations = {'T1': 'L1', 'T2': 'L3', 'T3': 'L4', 'T4': 'L8', 'T5': 'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade_iteratively(1, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])
>>> trade_iteratively(None, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])

請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE438、代做C/C++編程語言
  • 下一篇: cs400編程代寫、A03.FirstGit程序語言代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久亚洲国产精品一区二区| 久久中文在线| 久久精品国产77777蜜臀| 欧美一区午夜精品| 久久久噜噜噜久久人人看| 久久亚洲欧美| 欧美日本三区| 国产欧美一区二区精品婷婷| 韩国三级在线一区| 亚洲激情一区| 亚洲一卡久久| 狂野欧美一区| 国产精品久久久久久久app| 国产一区二区0| 亚洲肉体裸体xxxx137| 亚洲在线观看| 欧美超级免费视 在线| 国产精品久久久久aaaa樱花| 激情国产一区二区| 亚洲天堂黄色| 久热国产精品| 国产精品一二三视频| 亚洲国产成人av| 亚洲欧美日韩在线不卡| 免费在线观看一区二区| 国产精一区二区三区| 亚洲欧洲三级电影| 香蕉久久久久久久av网站| 欧美大片一区二区三区| 国产亚洲高清视频| 一区二区三区高清视频在线观看| 久久福利资源站| 国产精品观看| 9l国产精品久久久久麻豆| 狂野欧美激情性xxxx欧美| 国产精品网站在线| 99国产精品一区| 免费在线观看一区二区| 国产深夜精品福利| 一区二区三区日韩欧美| 免费在线亚洲欧美| 国语自产精品视频在线看一大j8| 亚洲午夜精品福利| 欧美猛交免费看| 亚洲国产美女| 六十路精品视频| 韩国v欧美v日本v亚洲v| 欧美在线观看www| 国产精品亚洲аv天堂网| 一本色道久久综合狠狠躁篇怎么玩 | 欧美国产精品劲爆| 黄色成人av在线| 久久国产乱子精品免费女| 国产麻豆一精品一av一免费| 中文日韩电影网站| 欧美日韩中文精品| 国产精品99久久99久久久二8 | 亚洲一区免费视频| 欧美视频一区二区三区四区| 中文av一区二区| 欧美日精品一区视频| 99亚洲视频| 国产精品国产三级国产普通话99| 99视频日韩| 国产精品麻豆va在线播放| 亚洲午夜国产成人av电影男同| 欧美精品一区二区三区四区| 日韩亚洲欧美一区二区三区| 欧美日韩一区二区精品| 亚洲伊人久久综合| 国产视频一区在线观看一区免费| 欧美在线日韩在线| 狠狠久久亚洲欧美| 欧美成人精精品一区二区频| 亚洲精品乱码久久久久久黑人| 欧美成人三级在线| 亚洲网站视频福利| 国产亚洲一二三区| 麻豆精品视频| 一区二区三区波多野结衣在线观看| 欧美色区777第一页| 欧美一区二区黄色| 在线观看成人一级片| 欧美激情精品久久久久久变态| 在线视频日韩精品| 韩日成人av| 欧美日韩1080p| 欧美一区国产在线| 亚洲人成网站在线观看播放| 国产精品麻豆成人av电影艾秋 | 久久精品国产77777蜜臀| 伊人婷婷久久| 国产精品二区二区三区| 久久久久成人精品| 一本综合久久| 国产一区二区视频在线观看| 欧美激情一区二区三区四区| 午夜精品视频在线观看一区二区| 在线国产欧美| 国产精品日韩久久久| 欧美成人免费va影院高清| 亚洲视频在线播放| 亚洲国产日韩一区二区| 国产精品婷婷午夜在线观看| 欧美国产国产综合| 欧美影院一区| 亚洲特黄一级片| 亚洲欧洲在线一区| 精品电影在线观看| 国产裸体写真av一区二区| 欧美日韩免费观看一区=区三区| 久久国产婷婷国产香蕉| 亚洲网站在线看| 亚洲精品国产视频| 亚洲国产mv| 尤物视频一区二区| 国语自产精品视频在线看一大j8| 欧美网站在线观看| 欧美美女bb生活片| 欧美/亚洲一区| 久久久国产精品一区二区中文| 在线亚洲欧美| 中文国产成人精品| 日韩视频免费| 亚洲精品一区二区三区99| 在线观看视频欧美| 伊人久久大香线蕉综合热线| 国产一区二区精品久久99| 国产精品日本| 国产欧美欧美| 国产性天天综合网| 国产情人节一区| 国产欧美日韩一区二区三区在线观看 | 国产一区二区中文字幕免费看| 国产精品久久久久久久久久久久久久| 欧美国产欧美亚洲国产日韩mv天天看完整 | 欧美国产视频在线| 男人的天堂亚洲| 欧美激情一二区| 欧美日韩视频一区二区三区| 欧美午夜久久久| 国产精品毛片在线| 国产精品一区二区在线观看网站 | 亚洲天堂激情| 午夜久久久久久久久久一区二区| 中文在线资源观看网站视频免费不卡 | 国产欧美一级| 在线电影一区| 日韩亚洲欧美成人一区| 一本一本a久久| 亚洲制服av| 久久精品成人一区二区三区蜜臀| 久久精品视频在线播放| 美国十次了思思久久精品导航| 免费看黄裸体一级大秀欧美| 欧美精品一区二区三区高清aⅴ| 欧美激情一区二区三区成人| 国产精品久久久久天堂| 国产日韩精品久久久| 一区二区三区在线视频观看| 亚洲日本一区二区| 亚洲女优在线| 美女精品一区| 欧美视频在线视频| 国产一区三区三区| 日韩性生活视频| 久久gogo国模啪啪人体图| 欧美成人亚洲成人日韩成人| 国产精品久久久久91| 国内精品久久久久久久影视蜜臀 | 亚洲美女在线视频| 欧美在线一二三四区| 欧美精品在线免费播放| 国产三级欧美三级| 日韩视频精品在线| 久久精品国产第一区二区三区| 欧美高清视频免费观看| 国产精品午夜国产小视频| 亚洲激情六月丁香| 欧美在线999| 欧美日韩亚洲高清| 激情欧美亚洲| 亚洲免费视频网站| 欧美日韩国产精品专区| 精品1区2区3区4区| 午夜日本精品| 欧美日韩高清在线播放| 红桃视频国产一区| 亚洲欧美精品| 欧美第十八页| 1000部精品久久久久久久久| 亚洲欧美一区在线| 欧美日韩伦理在线| 亚洲国产一区二区三区青草影视 | 亚洲欧美一区二区精品久久久| 欧美激情五月| 最新精品在线| 免费亚洲网站| 亚洲成人在线视频播放| 欧美亚洲视频一区二区|