99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫EMS5730、代做Python設計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美日韩一区在线观看| 欧美影片第一页| 欧美军同video69gay| 日韩在线卡一卡二| 欧美色图在线观看| 亚洲成a人片在线不卡一二三区| 色妹子一区二区| 午夜在线电影亚洲一区| 8x福利精品第一导航| 极品销魂美女一区二区三区| 欧美激情综合五月色丁香小说| youjizz久久| 五月激情六月综合| 国产欧美久久久精品影院| 色综合天天视频在线观看 | 国产精品久久三| 日本丶国产丶欧美色综合| 亚洲bdsm女犯bdsm网站| 久久久久九九视频| 欧美在线短视频| 国产一区美女在线| 亚洲裸体在线观看| 精品国产污网站| 一道本成人在线| 久久99最新地址| 亚洲日本va在线观看| 日韩精品资源二区在线| 成人黄色一级视频| 青青草国产精品97视觉盛宴| 亚洲免费观看高清完整版在线观看 | 亚洲欧美色一区| 日韩欧美亚洲一区二区| 91亚洲国产成人精品一区二区三| 日韩有码一区二区三区| 综合色天天鬼久久鬼色| 日韩视频一区二区在线观看| 色综合久久综合网97色综合| 激情小说亚洲一区| 亚洲一区二区三区四区在线| 中文字幕va一区二区三区| 91精品国产一区二区三区| 不卡一二三区首页| 国产老肥熟一区二区三区| 亚洲国产wwwccc36天堂| 亚洲欧洲一区二区三区| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美日韩成人高清| 91成人网在线| 暴力调教一区二区三区| 国产aⅴ综合色| 国产精品自产自拍| 美日韩一区二区| 日韩成人精品在线| 视频一区视频二区中文字幕| 一区二区三区美女| 亚洲乱码中文字幕| 最新国产成人在线观看| 国产精品久久久久久久裸模 | 樱桃视频在线观看一区| 亚洲欧洲av色图| 国产精品少妇自拍| 国产精品色在线观看| 中文字幕 久热精品 视频在线 | 99久精品国产| 99天天综合性| 色婷婷激情综合| 日本韩国一区二区三区视频| 欧洲av在线精品| 欧美三级日韩三级| 欧美日韩精品福利| 欧美一区二区久久| 日韩精品自拍偷拍| 久久精品一区二区三区不卡牛牛 | 99久久99久久精品免费观看| 成人国产亚洲欧美成人综合网| 99精品欧美一区| 欧美午夜精品理论片a级按摩| 欧美三级在线看| 日韩一卡二卡三卡国产欧美| 国产精品主播直播| 久久99热这里只有精品| 国产麻豆成人传媒免费观看| 不卡区在线中文字幕| 欧美午夜电影网| 2020国产成人综合网| 中文字幕一区二区三区蜜月 | 亚洲丝袜美腿综合| 香蕉av福利精品导航| 激情综合五月天| av在线播放不卡| 欧美一区二区在线免费播放| 久久精品在这里| 一区二区三区.www| 久色婷婷小香蕉久久| 一本色道久久综合亚洲91| 91 com成人网| 亚洲欧美激情小说另类| 国产综合色视频| 精品1区2区3区| 亚洲国产精品成人久久综合一区| 亚洲一区二区高清| 国产69精品一区二区亚洲孕妇| 欧美午夜宅男影院| 国产精品国产三级国产a| 日韩电影在线观看电影| eeuss鲁片一区二区三区| 日韩视频一区二区三区在线播放| 18成人在线观看| 国产一区在线观看视频| 欧美三级视频在线播放| 国产精品乱码一区二三区小蝌蚪| 美女任你摸久久| 欧美亚洲图片小说| 日韩一区中文字幕| 国产精品一二三四区| 日韩一区二区三区三四区视频在线观看| 国产清纯在线一区二区www| 奇米色一区二区三区四区| 色综合久久中文综合久久97| 欧美经典一区二区三区| 久久精品国产99久久6| 精品视频在线免费看| 国产精品久久久久aaaa樱花 | 午夜精品影院在线观看| 一本到三区不卡视频| 中文字幕一区二区三区不卡| 粉嫩av亚洲一区二区图片| 久久久久久久久久久久电影| 捆绑变态av一区二区三区| 欧美高清dvd| 天涯成人国产亚洲精品一区av| 欧美综合亚洲图片综合区| 一区二区三区中文字幕精品精品| 成人一区二区三区视频在线观看| 久久久久久99久久久精品网站| 国产一区二区视频在线| 久久免费视频色| 丰满少妇在线播放bd日韩电影| 欧美国产日韩精品免费观看| 成人av午夜电影| 亚洲欧美日韩精品久久久久| 在线视频亚洲一区| 性久久久久久久| 欧美成人aa大片| 国产成人在线网站| 亚洲三级小视频| 欧美日韩视频一区二区| 日本不卡视频在线| 欧美精品一区二区三区久久久| 国产裸体歌舞团一区二区| 中文av一区二区| 亚洲人成网站在线| 亚洲精品一区二区精华| 宅男在线国产精品| 欧美在线免费观看视频| 99久久精品99国产精品| 国产精品一区二区三区乱码| 麻豆一区二区三区| 三级欧美韩日大片在线看| 亚洲国产成人91porn| 亚洲一区二区三区在线看| 亚洲人成在线观看一区二区| 中文字幕欧美一区| 欧美国产成人精品| 久久久精品中文字幕麻豆发布| 91久久线看在观草草青青 | 国产精品不卡在线| 99视频一区二区三区| 欧美日韩成人高清| 天堂影院一区二区| 国产精品美女久久久久久2018| 久久99国产精品成人| 国模娜娜一区二区三区| 香蕉加勒比综合久久| 性做久久久久久| 天天av天天翘天天综合网| 午夜精品爽啪视频| 天天操天天干天天综合网| 日韩精品三区四区| 看片网站欧美日韩| 美女在线视频一区| 国产真实乱偷精品视频免| 国产精品自在欧美一区| 国产成人精品三级| 99九九99九九九视频精品| www.日韩av| 91国内精品野花午夜精品| 欧美色中文字幕| 7777精品伊人久久久大香线蕉的| 欧美一区二区三区视频免费播放| 欧美一区二区三区思思人| 欧美精品一区二区不卡| 国产精品大尺度| 香蕉久久一区二区不卡无毒影院| 免费欧美高清视频| 国产一区二区三区在线观看免费视频| 成人动漫一区二区三区| 欧美日韩国产免费一区二区 | 亚洲电影视频在线| 久久精品国产99|