99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫EMS5730、代做Python設計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲天堂激情| 激情婷婷久久| 欧美成人小视频| 亚洲自拍偷拍麻豆| 亚洲人成网在线播放| 国产日韩综合一区二区性色av| 欧美刺激午夜性久久久久久久| 欧美在线免费播放| 在线亚洲免费视频| 亚洲美女毛片| 亚洲大片av| 黄色成人免费观看| 国产精品亚洲成人| 国产精品久久久久婷婷| 欧美欧美天天天天操| 麻豆精品精品国产自在97香蕉| 午夜精品久久久久影视| 亚洲一区二区四区| 一区二区三区免费在线观看| 亚洲精品人人| 亚洲美女av黄| 亚洲美女精品久久| 亚洲全黄一级网站| 亚洲三级免费观看| 亚洲精品一级| 亚洲精品一区在线观看| 亚洲精品一级| 亚洲视频在线一区观看| 亚洲天堂网站在线观看视频| 一区二区欧美视频| 亚洲图片在线| 午夜性色一区二区三区免费视频| 亚洲永久视频| 99视频精品| 久久久久九九视频| 红桃视频欧美| 国产精品普通话对白| 国产老肥熟一区二区三区| 国产精品三区www17con| 国产综合欧美| 亚洲高清久久网| 夜夜嗨av一区二区三区| 亚洲一区一卡| 久久一区欧美| 欧美日韩国产色站一区二区三区| 国产精品vip| 国产原创一区二区| 最新日韩在线视频| 亚洲欧美精品suv| 久久亚洲综合色| 欧美高清在线视频观看不卡| 欧美视频一区在线观看| 国产一区二区三区直播精品电影| 狠狠色2019综合网| 亚洲精品乱码久久久久久蜜桃麻豆| 亚洲一品av免费观看| 久久久精品国产免大香伊 | 一区二区欧美精品| 亚洲欧美国产毛片在线| 另类专区欧美制服同性| 欧美日韩一二区| 国产一区二区日韩精品| 亚洲日本无吗高清不卡| 午夜视频久久久久久| 欧美成人免费全部| 国产日韩一级二级三级| 亚洲精品久久久久中文字幕欢迎你| 亚洲一区二区高清视频| 久久综合狠狠| 国产欧美日韩91| 一区二区三区高清不卡| 久久久久网址| 国产精品综合av一区二区国产馆| 亚洲人永久免费| 欧美在线观看一二区| 国产精品国产成人国产三级| 1024欧美极品| 久久精品亚洲精品| 国产精品高清一区二区三区| 亚洲精品国产拍免费91在线| 久久天天综合| 国产一级一区二区| 午夜精品亚洲| 国产精品久久久久久久久久免费| 亚洲人妖在线| 另类综合日韩欧美亚洲| 国产原创一区二区| 午夜精品在线| 国产精品色网| 亚洲一区在线播放| 国产精品porn| 亚洲日本成人| 欧美日韩不卡在线| 亚洲免费高清视频| 欧美久久久久久久久| 亚洲激情视频网| 欧美成人在线影院| 亚洲国产精品悠悠久久琪琪| 老司机成人在线视频| 国产主播一区二区三区| 久久精品一本久久99精品| 国内视频一区| 老巨人导航500精品| 国内成人在线| 老司机午夜精品视频| 精品成人在线观看| 欧美黑人多人双交| 亚洲激情av| 欧美精选一区| 午夜久久黄色| 国产美女诱惑一区二区| 欧美一区二区三区在线播放| 国产视频综合在线| 久久一二三四| 99精品99久久久久久宅男| 国产精品国产三级国产a| 亚洲女ⅴideoshd黑人| 国产日本欧美一区二区| 久久一区二区三区四区五区| 亚洲第一在线视频| 欧美午夜精品| 久久精品成人| 日韩一级二级三级| 国产日韩欧美一区| 免费欧美网站| 亚洲中无吗在线| 一区二区三区中文在线观看 | 欧美黄色免费网站| 亚洲欧美亚洲| 亚洲第一在线综合在线| 欧美日韩一区二区三区在线| 亚洲欧美日韩专区| 亚洲国产日本| 国产欧美一区二区三区在线看蜜臀| 久久精品男女| 亚洲一区在线观看视频| 极品日韩久久| 国产毛片精品视频| 欧美日韩国产精品| 久久黄色级2电影| 一区二区欧美日韩| 在线观看亚洲视频啊啊啊啊| 欧美视频中文字幕| 麻豆91精品91久久久的内涵| 亚洲欧美国产另类| 亚洲每日在线| 亚洲国产高清在线| 国产一区二区三区在线观看精品| 欧美精品一区在线| 久久久九九九九| 亚洲欧美精品在线观看| 日韩视频免费观看高清完整版| 国内精品久久久| 国产欧美日韩亚州综合| 国产精品激情电影| 欧美日韩一区成人| 欧美成人黄色小视频| 久久精品理论片| 亚洲精品久久久久久久久久久久 | 国产亚洲一级| 国产精品久久毛片a| 欧美精品激情blacked18| 久久综合久久综合久久| 亚洲欧美日韩中文播放| 亚洲一区二区成人| 亚洲午夜国产成人av电影男同| 亚洲乱码久久| 亚洲日韩欧美视频| 亚洲国产精品va在线看黑人| 在线欧美亚洲| 亚洲国产精品国自产拍av秋霞| 在线观看国产精品淫| 激情小说另类小说亚洲欧美 | 欧美成人中文字幕在线| 六十路精品视频| 欧美激情精品久久久六区热门 | 亚洲图片激情小说| 亚洲淫性视频| 久久国产精品久久精品国产 | 黄色成人小视频| 亚洲国产va精品久久久不卡综合| 亚洲福利视频免费观看| 亚洲激情黄色| 国产精品99久久久久久久vr| 亚洲欧美在线视频观看| 久久久久久久久久久久久女国产乱 | 欧美激情1区2区3区| 欧美日韩一区不卡| 国产啪精品视频| 影视先锋久久| 99热在这里有精品免费| 亚洲女同同性videoxma| 久久久久久网站| 欧美日韩大片| 国产精品羞羞答答xxdd| 136国产福利精品导航| 亚洲毛片视频| 久久av一区二区三区亚洲| 免费看黄裸体一级大秀欧美| 欧美网站在线观看|