99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做ECN6540、代寫Java,c++編程語言

時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECN6540  ECN6540 1

Data Provided:

Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
and Yannoulis).


DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

ECN6540 Econometric Methods

Duration: 2? Hours

Maximum 1500 words excluding equations


The answers to the questions must be type-written. The preference is that
symbols and equations should be inserted into the document using the
equation editor in Word. Alternatively, they can be scanned and inserted as an
image (providing it is clear and readable).


There are two questions, firstly on microeconometrics and secondly on
macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
question indicate the weighting given to component sections. Any calculations
must show all workings otherwise full marks will not be awarded.

ECN654540 2
MICROECONOMETRICS

1. The non-mortgage debt behaviour of individuals is modelled using UK
cross sectional data for 2017 from Understanding Society based upon
11,**0 employees. The table below describes the variables in the data.


Variable Definitions
-----------------------------------------------------------------------------------------------------
debtor = 1 if has any non-mortgage debt, 0 otherwise
debt_inc = debt to income ratio (outstanding debt ? annual income)
work_fin = 1 if employed in financial sector, 0 otherwise
lincome = natural logarithm of income last month
ghealth = 1 if currently in good or excellent health, 0 otherwise
sex = 1 if male, 0=female
degree = 1 if university degree, 0 = below degree level education
lsavinv_inc = natural logarithm of saving & investment annual income
age = age of individual in years
agesq = age squared
-----------------------------------------------------------------------------------------------------
a. The following Stata output shows an analysis of modelling the probability that
an individual holds non-mortgage debt using a Logit regression.

logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Logistic regression Number of obs = 11,**0
LR chi2(8) = 546.50
Prob > chi2 = 0.0000
Log likelihood = -7067.5606 Pseudo R2 = 0.0372

----------------------------------------------------------------------------------
debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+--------------------------------------------------------------
1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
|
work_fin#c.lincome |
1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
|
ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
lsavinv_inc | -.081**22 .0085226 -9.61 0.000 -.0986062 -.0651983
_cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
----------------------------------------------------------------------------------

ib(0).work_fin##c.lincome is an interaction effect between a binary
and continuous variable. Summary statistics on variables used in the analysis
are provided below.

sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
1.work_fin | 11,767 .0398572 .1956** 0 11
lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

work_fin#|
c.lincome 1 | 11,767 .3197615 1.574852 0 9.72120
ECN6540
ECN6540 3
ghealth | 11,767 .5457636 .4979224 0 1
sex | 11,767 .4812612 .49967 0 1
degree | 11,767 .3192827 .4662186 0 1
age | 11,767 44.43885 10.39257 18 65
lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
-------------+---------------------------------------------------------

i) What do the coefficients of work_fin, lincome and the interaction
term imply? Explain whether the estimates can be interpreted.
ii) Showing your calculations in full, find the marginal effects evaluated
at the mean from the above output.
iii) Provide an economic interpretation of the marginal effects found in
(a(ii)).
iv) Given the pseudo R-squared what is the value of the constrained
log likelihood function? Show your calculation.

[10 marks]

[25 marks]

[10 marks]

[5 marks]
b. There is also information on the amount of debt held as a proportion of
income. This outcome is modelled using the Heckman sample selection
estimator. The Stata output is shown below.

heckman debt_inc age agesq sex degree lsavinv_inc,
select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

Heckman selection model Number of obs = 11,**0
Wald chi2(5) = 249.22
Log likelihood = -13437.59 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------+------------------------------------------------------------
debt_inc |
age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
_cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
-----------------------+------------------------------------------------------------
debtor |
1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
|
work_fin#c.lincome |
1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
|
ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
_cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
-------------------+----------------------------------------------------------------
lambda | -2.579767 .0**69 -2.656537 -2.502997
--------------------------------------------------------------------------------

i) Interpret the estimates in the outcome equation.
ii) In the context of the above Stata output what does the estimate of
the inverse Mills ratio (lambda) suggest? What does lambda
provide an estimate of in terms of the theory?
[5 marks]


[15 marks]
ECN6540
ECN6540 4



c.
iii) What assumption has been made about the covariates
work_fin, lincome and ghealth in the treatment equation?
What are the implications if these assumptions are not met? Are
they individually statistically significant? If these variables are also
included in the outcome equation explain whether the model is
identified or not.

In the context of the above application the following figure shows the
distribution of debt as a proportion of annual income.

Describe a situation in which a Tobit specification would be the preferred
modelling choice rather than a sample selection approach. What
assumptions would the Tobit modelling approach have to make with
regard to the   treatment   and   outcome   equations?


ECN6540
ECN6540 5
MACROECONOMETRICS


2. a.

The following Stata output is based upon modelling aggregate
savings as a function of Gross Domestic Product (GDP), both
measured in constant prices, over time () using data for the U.S.
over the period 1960 to 2020. The savings function is a double
logarithmic specification as follows:
log = 0 + 1log +
Where log is the natural logarithm of savings and log is the
natural logarithm of GDP. The Stata output also shows the results
of ADF tests for savings and GDP. Note that in the output L
denotes a lag and D a difference.


regress logS logY

Source | SS df MS Number of obs = 61
-------------+------------------------------ F( 1, 59) = 180.39
Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
Residual | 9.6029125 59 .**761229 R-squared = 0.7535
-------------+------------------------------ Adj R-squared = 0.7494
Total | 38.963084 60 .649384**4 Root MSE = .40344
------------------------------------------------------------------------------
logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
_cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
------------------------------------------------------------------------------

Durbin-Watson d-statistic( 2, 61) = .7252386
predict e, resid

i) Interpret the OLS results. Explain whether the analysis is likely
to be spurious?
ii) What do the results of the ADF tests on savings and GDP imply
at the 5 percent level? Show the test statistic used, the null
hypothesis tested and the appropriate critical value.
iii) Explain whether savings and GDP are cointegrated at the 5
percent level. Explicitly state the null hypothesis, show
algebraically the estimated test equation based upon the
output, and provide the appropriate critical value.

dfuller logS, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logS |
L1. | -.129875 .0534553 -2.43 0.019 -.2372431 -.0225069
LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
L3D. | -.0834007 .0858594 -0.97 0.336 -.2558545 .08**53
L4D. | -.2258198 .0784568 -2.88 0.006 -.3834049 -.0682348
cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
------------------------------------------------------------------------------

ECN6540
ECN654**
dfuller logY, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY |
L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
_cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
------------------------------------------------------------------------------

dfuller e, lag(4)

Test Statistic
----------------------------
Z(t) -4.042
----------------------------

b. Explain why the Johansen approach to cointegration may be
preferable to the Engle-Granger two step approach, in each of the
following two scenarios:
i) In the above example (part a) when there are variables in the
model, i.e. = 2?
ii) When ?3. In this scenario what is the maximum number of
cointegrating vectors?

c. A researcher has modelled the relationship between personal
consumption expenditure and the money supply as measured by
M2 based upon a double logarithmic specification as follows:
log() = 0 + 1log(2) +
They then build a dynamic forecast of consumption. Two
alternative models are estimated over the period 1969q1 through
to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
ARIMA(1,1,1). Then the researcher forecasts out of sample
through to 2010q3. The results are shown below along with
diagnostic statistics.

i) Based upon the output below for the ARIMA(1,1,1) model draw
both the ACF and PACF for the AR and MA components.
ii) Explain whether the models are stationary and invertible, along
with any potential implications.
iii) Explain in detail which of the above two models is preferred
and why. Outline any further analysis you may want to
undertake giving your reasons.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
  • 下一篇:代投代發EI 檢索 EI會議
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          a4yy欧美一区二区三区| 国产欧美精品| 久久精品国产一区二区三区免费看| 国产欧美高清| 欧美三级黄美女| 久久在线观看视频| 午夜精品久久久久久久99樱桃 | 在线观看亚洲精品视频| 欧美视频在线一区二区三区| 久久综合中文色婷婷| 午夜精品一区二区三区在线视 | 亚洲国产日韩一区| 韩国av一区二区| 国产欧美一区二区色老头| 欧美精品123区| 美女免费视频一区| 久久久青草婷婷精品综合日韩| 在线视频你懂得一区| 亚洲欧洲精品一区| 亚洲高清网站| 亚洲风情亚aⅴ在线发布| 国产主播一区二区三区| 国产美女精品视频| 国产精品人人爽人人做我的可爱| 欧美精品国产精品日韩精品| 欧美电影免费| 欧美激情片在线观看| 男女激情久久| 欧美多人爱爱视频网站| 久久这里只有| 欧美插天视频在线播放| 女生裸体视频一区二区三区| 久久精品91久久久久久再现| 久久精品国产一区二区电影| 久久精品夜色噜噜亚洲aⅴ| 久久国产精品毛片| 久久精品导航| 蜜臀a∨国产成人精品| 久久婷婷av| 欧美高清影院| 国产精品二区二区三区| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ入口 | 久久久精品性| 久久阴道视频| 欧美精品成人| 欧美视频一区| 国产日韩欧美日韩大片| 极品少妇一区二区三区精品视频| 极品尤物av久久免费看| 亚洲人成网站在线播| 日韩亚洲欧美成人| 亚洲一区在线播放| 久久精品国产亚洲a| 欧美aa在线视频| 欧美性天天影院| 韩日视频一区| 一区二区三区精品| 久久都是精品| 欧美久久久久久久| 国产欧美精品一区二区色综合| 黄色成人在线免费| 中日韩高清电影网| 久久gogo国模裸体人体| 欧美精品一区三区| 国产精品五月天| 亚洲欧洲偷拍精品| 久久av老司机精品网站导航| 欧美福利小视频| 国产日韩欧美二区| 日韩一级黄色片| 久久精品人人| 欧美性猛交xxxx乱大交退制版 | 国产精品久久777777毛茸茸| 黄色成人av在线| 午夜精品成人在线视频| 欧美激情1区2区| 影音先锋久久| 欧美在线视频播放| 国产精品对白刺激久久久| 黄色在线成人| 亚洲女女做受ⅹxx高潮| 欧美久色视频| 在线电影国产精品| 午夜久久电影网| 欧美日韩精品一区二区三区| 伊人久久av导航| 久久久久.com| 国产亚洲精品自拍| 亚洲欧美一区二区三区久久| 欧美三级在线视频| 91久久精品一区二区三区| 久久国产综合精品| 国产精品视屏| 午夜在线一区| 国产欧美一区二区三区沐欲| 亚洲尤物在线| 国产精品家教| 性久久久久久| 国产婷婷一区二区| 欧美自拍偷拍| 好看的日韩视频| 久久久久国产精品麻豆ai换脸| 国产女主播视频一区二区| 亚洲夜间福利| 国产日韩综合| 欧美在线网址| 揄拍成人国产精品视频| 美女视频网站黄色亚洲| 在线成人激情视频| 欧美黄色精品| 亚洲手机成人高清视频| 国产精品视频在线观看| 欧美一区免费视频| 国产一区二区三区在线观看免费 | 久久精品电影| 红桃视频亚洲| 欧美久久久久久久| 欧美亚洲综合网| 亚洲第一综合天堂另类专| 欧美黄色网络| 亚洲网友自拍| 一区二区在线观看视频在线观看 | 亚洲日本在线观看| 国产精品久久二区| 久久美女性网| 一本大道久久精品懂色aⅴ| 国产欧美精品日韩精品| 免费在线观看日韩欧美| 一区二区福利| 樱桃国产成人精品视频| 欧美日韩一区二区视频在线观看 | 韩国av一区二区三区四区| 母乳一区在线观看| 午夜精品在线| 亚洲精品国产欧美| 国产亚洲精品美女| 欧美日韩91| 久久久99久久精品女同性| 日韩午夜电影av| 海角社区69精品视频| 国产精品美女在线| 欧美国产日本高清在线| 欧美专区在线观看一区| 国产精品99久久久久久有的能看| 激情久久中文字幕| 国产精品私人影院| 欧美日韩视频在线观看一区二区三区| 欧美一区二区性| 一本色道久久综合亚洲91| 亚洲国产精品久久久久秋霞蜜臀| 国产精品入口福利| 欧美午夜精品一区二区三区| 女人色偷偷aa久久天堂| 久久久爽爽爽美女图片| 销魂美女一区二区三区视频在线| 日韩亚洲欧美一区| 91久久精品一区| 伊人久久亚洲美女图片| 国产欧美日韩一区二区三区在线 | 国产精品每日更新| 欧美美女视频| 欧美激情一级片一区二区| 久久人人超碰| 久久婷婷国产综合国色天香| 香蕉精品999视频一区二区| 亚洲一区二区三区乱码aⅴ蜜桃女| 亚洲精品一区二区三区婷婷月| 亚洲激情av在线| 91久久精品www人人做人人爽| 亚洲成人影音| 亚洲精品视频免费| 亚洲国产精品欧美一二99| 悠悠资源网亚洲青| 亚洲成人在线网站| 亚洲人成在线观看| 亚洲精品视频中文字幕| 亚洲精品免费观看| 亚洲视频在线观看一区| 小处雏高清一区二区三区| 久久成人亚洲| 久久尤物视频| 欧美人妖另类| 国产九九精品| 在线观看三级视频欧美| 亚洲日本va午夜在线影院| 亚洲开发第一视频在线播放| 在线亚洲美日韩| 久久不射中文字幕| 欧美成人激情视频| 欧美性猛交视频| 黄色工厂这里只有精品| 亚洲激情在线观看| 亚洲一级高清| 久久亚洲美女| 欧美日韩在线视频一区二区| 国产一区视频在线观看免费| 国内欧美视频一区二区| 亚洲精品日本| 久久精品国产免费看久久精品| 久久午夜羞羞影院免费观看|