99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做ECN6540、代寫Java,c++編程語言

時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECN6540  ECN6540 1

Data Provided:

Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
and Yannoulis).


DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

ECN6540 Econometric Methods

Duration: 2? Hours

Maximum 1500 words excluding equations


The answers to the questions must be type-written. The preference is that
symbols and equations should be inserted into the document using the
equation editor in Word. Alternatively, they can be scanned and inserted as an
image (providing it is clear and readable).


There are two questions, firstly on microeconometrics and secondly on
macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
question indicate the weighting given to component sections. Any calculations
must show all workings otherwise full marks will not be awarded.

ECN654540 2
MICROECONOMETRICS

1. The non-mortgage debt behaviour of individuals is modelled using UK
cross sectional data for 2017 from Understanding Society based upon
11,**0 employees. The table below describes the variables in the data.


Variable Definitions
-----------------------------------------------------------------------------------------------------
debtor = 1 if has any non-mortgage debt, 0 otherwise
debt_inc = debt to income ratio (outstanding debt ? annual income)
work_fin = 1 if employed in financial sector, 0 otherwise
lincome = natural logarithm of income last month
ghealth = 1 if currently in good or excellent health, 0 otherwise
sex = 1 if male, 0=female
degree = 1 if university degree, 0 = below degree level education
lsavinv_inc = natural logarithm of saving & investment annual income
age = age of individual in years
agesq = age squared
-----------------------------------------------------------------------------------------------------
a. The following Stata output shows an analysis of modelling the probability that
an individual holds non-mortgage debt using a Logit regression.

logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Logistic regression Number of obs = 11,**0
LR chi2(8) = 546.50
Prob > chi2 = 0.0000
Log likelihood = -7067.5606 Pseudo R2 = 0.0372

----------------------------------------------------------------------------------
debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+--------------------------------------------------------------
1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
|
work_fin#c.lincome |
1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
|
ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
lsavinv_inc | -.081**22 .0085226 -9.61 0.000 -.0986062 -.0651983
_cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
----------------------------------------------------------------------------------

ib(0).work_fin##c.lincome is an interaction effect between a binary
and continuous variable. Summary statistics on variables used in the analysis
are provided below.

sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
1.work_fin | 11,767 .0398572 .1956** 0 11
lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

work_fin#|
c.lincome 1 | 11,767 .3197615 1.574852 0 9.72120
ECN6540
ECN6540 3
ghealth | 11,767 .5457636 .4979224 0 1
sex | 11,767 .4812612 .49967 0 1
degree | 11,767 .3192827 .4662186 0 1
age | 11,767 44.43885 10.39257 18 65
lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
-------------+---------------------------------------------------------

i) What do the coefficients of work_fin, lincome and the interaction
term imply? Explain whether the estimates can be interpreted.
ii) Showing your calculations in full, find the marginal effects evaluated
at the mean from the above output.
iii) Provide an economic interpretation of the marginal effects found in
(a(ii)).
iv) Given the pseudo R-squared what is the value of the constrained
log likelihood function? Show your calculation.

[10 marks]

[25 marks]

[10 marks]

[5 marks]
b. There is also information on the amount of debt held as a proportion of
income. This outcome is modelled using the Heckman sample selection
estimator. The Stata output is shown below.

heckman debt_inc age agesq sex degree lsavinv_inc,
select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

Heckman selection model Number of obs = 11,**0
Wald chi2(5) = 249.22
Log likelihood = -13437.59 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------+------------------------------------------------------------
debt_inc |
age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
_cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
-----------------------+------------------------------------------------------------
debtor |
1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
|
work_fin#c.lincome |
1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
|
ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
_cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
-------------------+----------------------------------------------------------------
lambda | -2.579767 .0**69 -2.656537 -2.502997
--------------------------------------------------------------------------------

i) Interpret the estimates in the outcome equation.
ii) In the context of the above Stata output what does the estimate of
the inverse Mills ratio (lambda) suggest? What does lambda
provide an estimate of in terms of the theory?
[5 marks]


[15 marks]
ECN6540
ECN6540 4



c.
iii) What assumption has been made about the covariates
work_fin, lincome and ghealth in the treatment equation?
What are the implications if these assumptions are not met? Are
they individually statistically significant? If these variables are also
included in the outcome equation explain whether the model is
identified or not.

In the context of the above application the following figure shows the
distribution of debt as a proportion of annual income.

Describe a situation in which a Tobit specification would be the preferred
modelling choice rather than a sample selection approach. What
assumptions would the Tobit modelling approach have to make with
regard to the   treatment   and   outcome   equations?


ECN6540
ECN6540 5
MACROECONOMETRICS


2. a.

The following Stata output is based upon modelling aggregate
savings as a function of Gross Domestic Product (GDP), both
measured in constant prices, over time () using data for the U.S.
over the period 1960 to 2020. The savings function is a double
logarithmic specification as follows:
log = 0 + 1log +
Where log is the natural logarithm of savings and log is the
natural logarithm of GDP. The Stata output also shows the results
of ADF tests for savings and GDP. Note that in the output L
denotes a lag and D a difference.


regress logS logY

Source | SS df MS Number of obs = 61
-------------+------------------------------ F( 1, 59) = 180.39
Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
Residual | 9.6029125 59 .**761229 R-squared = 0.7535
-------------+------------------------------ Adj R-squared = 0.7494
Total | 38.963084 60 .649384**4 Root MSE = .40344
------------------------------------------------------------------------------
logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
_cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
------------------------------------------------------------------------------

Durbin-Watson d-statistic( 2, 61) = .7252386
predict e, resid

i) Interpret the OLS results. Explain whether the analysis is likely
to be spurious?
ii) What do the results of the ADF tests on savings and GDP imply
at the 5 percent level? Show the test statistic used, the null
hypothesis tested and the appropriate critical value.
iii) Explain whether savings and GDP are cointegrated at the 5
percent level. Explicitly state the null hypothesis, show
algebraically the estimated test equation based upon the
output, and provide the appropriate critical value.

dfuller logS, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logS |
L1. | -.129875 .0534553 -2.43 0.019 -.2372431 -.0225069
LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
L3D. | -.0834007 .0858594 -0.97 0.336 -.2558545 .08**53
L4D. | -.2258198 .0784568 -2.88 0.006 -.3834049 -.0682348
cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
------------------------------------------------------------------------------

ECN6540
ECN654**
dfuller logY, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY |
L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
_cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
------------------------------------------------------------------------------

dfuller e, lag(4)

Test Statistic
----------------------------
Z(t) -4.042
----------------------------

b. Explain why the Johansen approach to cointegration may be
preferable to the Engle-Granger two step approach, in each of the
following two scenarios:
i) In the above example (part a) when there are variables in the
model, i.e. = 2?
ii) When ?3. In this scenario what is the maximum number of
cointegrating vectors?

c. A researcher has modelled the relationship between personal
consumption expenditure and the money supply as measured by
M2 based upon a double logarithmic specification as follows:
log() = 0 + 1log(2) +
They then build a dynamic forecast of consumption. Two
alternative models are estimated over the period 1969q1 through
to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
ARIMA(1,1,1). Then the researcher forecasts out of sample
through to 2010q3. The results are shown below along with
diagnostic statistics.

i) Based upon the output below for the ARIMA(1,1,1) model draw
both the ACF and PACF for the AR and MA components.
ii) Explain whether the models are stationary and invertible, along
with any potential implications.
iii) Explain in detail which of the above two models is preferred
and why. Outline any further analysis you may want to
undertake giving your reasons.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
  • 下一篇:代投代發EI 檢索 EI會議
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                久久蜜臀中文字幕| 裸体歌舞表演一区二区| 国产宾馆实践打屁股91| 一区二区在线观看视频| 久久综合久久久久88| eeuss国产一区二区三区| 欧美区一区二区三区| 精品一区二区三区视频在线观看| 《视频一区视频二区| 51精品视频一区二区三区| 国产不卡高清在线观看视频| 亚洲丝袜自拍清纯另类| 欧美va亚洲va国产综合| 欧美日韩国产另类一区| 一本大道久久精品懂色aⅴ| 久久99热这里只有精品| 午夜婷婷国产麻豆精品| 亚洲人成网站在线| 日韩一区欧美小说| 久久久精品人体av艺术| 欧美国产在线观看| 精品成人在线观看| 日韩一区二区免费视频| 777亚洲妇女| 欧美日韩不卡视频| 精品国产亚洲在线| 538在线一区二区精品国产| 亚洲精品日日夜夜| 中文字幕在线不卡一区| 久久精品亚洲乱码伦伦中文| 91精品国产欧美一区二区18| 成人sese在线| www.日本不卡| 国产一区二区看久久| 国产在线视频一区二区三区| 国产毛片精品一区| 国产一区二区视频在线播放| 极品少妇xxxx精品少妇| 美女视频一区在线观看| 美国毛片一区二区三区| 日本在线不卡视频一二三区| 亚洲欧美乱综合| 亚洲人成在线播放网站岛国| 中文字幕一区二区三区视频| 国产精品美女一区二区三区| 久久久久久免费毛片精品| 日韩欧美国产三级| 欧美色视频一区| 8x福利精品第一导航| 精品国产免费人成电影在线观看四季| 精品国产乱码久久久久久夜甘婷婷| 日韩免费观看2025年上映的电影| 337p粉嫩大胆噜噜噜噜噜91av| 国产视频一区在线观看| 欧美草草影院在线视频| 国产精品美女久久久久av爽李琼 | 色94色欧美sute亚洲线路二| 欧洲精品视频在线观看| 欧美一区二区国产| 欧美午夜一区二区| 精品91自产拍在线观看一区| 国产欧美日韩一区二区三区在线观看| 亚洲色图视频网| 免费不卡在线观看| 成人黄色网址在线观看| 欧美日韩高清在线| 亚洲国产精品成人久久综合一区| 亚洲永久精品国产| 日韩国产欧美在线观看| 不卡的电影网站| 日韩一级黄色大片| 国产精品高潮呻吟| 久久国内精品自在自线400部| 日韩av电影天堂| 成人av网址在线观看| 欧美丰满一区二区免费视频| 久久久www成人免费无遮挡大片| 亚洲精品免费看| 看电视剧不卡顿的网站| 99re66热这里只有精品3直播| 91精品国产麻豆国产自产在线| 欧美国产精品久久| 久久精品国产一区二区三| 色香蕉久久蜜桃| 亚洲国产成人午夜在线一区| 一区二区三区中文字幕在线观看| 久久99精品久久久久久久久久久久 | 亚洲女爱视频在线| 久久久三级国产网站| 偷拍一区二区三区四区| www.av精品| 中文字幕第一页久久| 国产一区二区三区香蕉| 欧美一区二区三区人| 一区二区三区在线播放| 91片在线免费观看| 中文字幕av在线一区二区三区| 亚洲第一电影网| 久久精品国产亚洲一区二区三区| 欧美亚洲综合另类| 亚洲午夜在线视频| 欧美中文字幕亚洲一区二区va在线| 国产精品情趣视频| 国产精品小仙女| 久久久精品免费观看| 亚洲综合免费观看高清完整版在线 | 日韩专区在线视频| 日本久久电影网| 国产精品久久久久影院亚瑟| 国产成人精品免费看| 久久久久久久综合色一本| 久久99国产精品免费网站| 精品91自产拍在线观看一区| 国内久久精品视频| 欧美精品一区二区三区一线天视频 | 国产91精品精华液一区二区三区| 精品国产乱码久久久久久老虎 | 91精品国产91久久久久久一区二区 | 日韩亚洲欧美在线| caoporn国产精品| 青青草国产成人av片免费| 国产精品三级在线观看| 欧美日韩国产中文| 成人的网站免费观看| 日本不卡一区二区| 亚洲三级理论片| 久久中文娱乐网| 制服丝袜亚洲精品中文字幕| 91影院在线免费观看| 国产麻豆一精品一av一免费| 亚洲第一福利一区| 亚洲欧洲韩国日本视频| 精品国产乱码久久| 欧美一区二区私人影院日本| 在线观看视频一区| 成人一区二区三区| 激情综合一区二区三区| 亚洲国产精品一区二区www在线| 国产精品日产欧美久久久久| 欧美电影免费观看高清完整版 | 91精品福利在线一区二区三区| 91偷拍与自偷拍精品| 成人国产免费视频| 丁香六月久久综合狠狠色| 美女尤物国产一区| 奇米色一区二区三区四区| 亚洲综合激情网| 亚洲精品视频一区| 亚洲精品久久7777| 亚洲在线成人精品| 亚洲一区二区三区在线看| 国产精品久久久久婷婷二区次| 国产欧美日韩中文久久| 国产午夜精品久久久久久免费视 | 日本一区中文字幕| 亚洲一区二区三区爽爽爽爽爽| 最新成人av在线| 中文字幕第一区二区| 欧美精品一区二区高清在线观看 | 久久久久久亚洲综合| 久久免费偷拍视频| 日韩久久久久久| 亚洲精品一区二区三区99| 精品国产伦一区二区三区观看方式 | 麻豆精品视频在线观看视频| 日本不卡中文字幕| 久久精品二区亚洲w码| 精品一区精品二区高清| 国产一区中文字幕| 成人美女视频在线观看| 99精品视频一区二区| 91精品1区2区| 日韩欧美专区在线| 国产欧美1区2区3区| 成人免费一区二区三区视频 | 久久综合九色综合欧美98| 久久精品夜色噜噜亚洲a∨| 国产精品进线69影院| 1区2区3区欧美| 午夜欧美电影在线观看| 久久97超碰色| 99精品1区2区| 91超碰这里只有精品国产| 欧美精品精品一区| 久久久久久久久久久久电影| 亚洲图片激情小说| 视频一区免费在线观看| 国产一区91精品张津瑜| 97se亚洲国产综合在线| 欧美私模裸体表演在线观看| 日韩丝袜情趣美女图片| 国产精品乱人伦| 丝袜脚交一区二区| 高清不卡在线观看| 欧美日韩在线精品一区二区三区激情| 精品少妇一区二区三区在线播放 | 91福利国产成人精品照片| 91精品麻豆日日躁夜夜躁| 久久久久国色av免费看影院| 亚洲女子a中天字幕|