99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品捆绑美女sm三区| 亚洲成人三级小说| 日本一区二区三区免费乱视频 | 日韩伦理免费电影| 日韩高清在线不卡| 国产日韩精品视频一区| 青娱乐精品视频| 欧美专区亚洲专区| 国产精品第13页| av在线不卡电影| 国产精品久久久久久久久免费樱桃 | 午夜精品久久久久久久99水蜜桃| 亚洲精品欧美专区| 成人晚上爱看视频| 国产精品美女一区二区在线观看| 免费观看成人av| 亚洲一区二区在线免费看| 欧美日韩国产综合一区二区| 久久不见久久见免费视频1| 丁香激情综合五月| 亚洲欧美综合色| 成人午夜电影网站| 久久这里只有精品首页| 久久婷婷国产综合国色天香| 久久国产尿小便嘘嘘尿| 免费观看在线综合| 91美女在线视频| 韩国成人在线视频| 国产剧情一区在线| 26uuu亚洲| 成人av电影在线网| 久久成人精品无人区| 国产亚洲一区二区三区四区| 日韩一二三区视频| 亚洲成av人**亚洲成av**| 国产一区二区中文字幕| 91久久精品一区二区二区| 成人免费毛片嘿嘿连载视频| 成人视屏免费看| 亚洲第一主播视频| 91最新地址在线播放| 国产免费观看久久| 国产成人综合自拍| 欧美精品一区二区三区一线天视频 | 久久99精品久久久久久久久久久久 | 97精品国产露脸对白| 综合久久给合久久狠狠狠97色| 大陆成人av片| 91精品福利在线一区二区三区 | 国产一区二区三区久久悠悠色av| 久久精品国产一区二区| 亚洲视频每日更新| 欧美精品一区二区三区蜜桃视频| 中文字幕一区二区三区在线观看 | 国产精品美日韩| 男男视频亚洲欧美| 久久综合色天天久久综合图片| 日韩欧美一区二区视频| 成人深夜视频在线观看| 免费成人小视频| 欧美丝袜丝交足nylons图片| 日韩免费看的电影| 国产综合久久久久久久久久久久 | 国内成+人亚洲+欧美+综合在线| 成人精品在线视频观看| 99精品久久只有精品| 91极品视觉盛宴| 亚洲成av人片一区二区梦乃| 韩国理伦片一区二区三区在线播放 | 亚洲国产三级在线| 99精品热视频| 国产精品九色蝌蚪自拍| 成人国产精品免费观看| 国产日韩欧美不卡在线| 色综合久久中文字幕| 亚洲综合色网站| 欧美激情综合五月色丁香小说| 91麻豆6部合集magnet| 久久er99精品| 一区二区欧美视频| 亚洲精品视频在线| 久久精品久久综合| 亚洲激情自拍视频| 国产精品全国免费观看高清| 日韩午夜激情免费电影| 波多野结衣中文字幕一区| 欧美日韩精品欧美日韩精品| 成人精品免费看| 波多野结衣视频一区| 成人av在线资源网站| 国产精品正在播放| 久久成人麻豆午夜电影| 在线观看不卡一区| 97se狠狠狠综合亚洲狠狠| 亚洲色图视频网| 成人免费毛片嘿嘿连载视频| 日韩欧美一级特黄在线播放| 丝瓜av网站精品一区二区| 亚洲与欧洲av电影| 国产91在线观看| 国产九色精品成人porny| 精品一区二区三区视频在线观看| 国产亚洲成aⅴ人片在线观看| 久久福利视频一区二区| 狠狠色丁香婷综合久久| 韩国v欧美v亚洲v日本v| 成人白浆超碰人人人人| 日韩亚洲欧美综合| 久久久久99精品一区| 久久久国产午夜精品| 美女视频免费一区| 久久久久久久久久美女| 一区二区三区在线不卡| 成人av综合在线| 亚洲另类一区二区| 夜夜嗨av一区二区三区| 亚洲成av人片一区二区梦乃| 日韩成人免费在线| 国产一区二区三区在线观看免费| 国产一区二区在线观看免费| 欧美国产日韩一二三区| www.久久久久久久久| 777亚洲妇女| 欧美美女视频在线观看| 精品无码三级在线观看视频| 亚洲素人一区二区| 欧美激情艳妇裸体舞| 91亚洲精品久久久蜜桃网站| 欧美精品一区二区三区蜜臀| 中文字幕在线免费不卡| 国产一区二区女| 欧美一级精品大片| 国产美女在线精品| 奇米亚洲午夜久久精品| 一区二区三区在线视频播放| 亚洲女子a中天字幕| 国产精品久久久久影院色老大| 欧美精品v日韩精品v韩国精品v| 成人黄色av网站在线| 亚洲自拍与偷拍| 国产欧美日韩激情| 欧美国产一区在线| 91小视频免费看| 一个色综合网站| 国产成人在线视频播放| 成人影视亚洲图片在线| 日精品一区二区| 国产精品毛片a∨一区二区三区| 一本久久精品一区二区| 婷婷丁香激情综合| 久久精品亚洲精品国产欧美kt∨| 免费成人在线观看视频| 中文字幕中文字幕在线一区| 国产日韩成人精品| 亚洲天堂2016| 亚洲国产精品一区二区www在线| 成人午夜电影小说| 全国精品久久少妇| 成人美女视频在线观看| 精品国产1区二区| 亚洲午夜羞羞片| 北条麻妃一区二区三区| 亚洲男同性恋视频| 视频一区二区欧美| 国产一区二区三区日韩| 一区二区三区不卡视频在线观看| 亚洲精品视频免费观看| 国产亚洲成av人在线观看导航| 欧美xxxx在线观看| 粉嫩aⅴ一区二区三区四区| 久久精品欧美日韩精品| 99久久国产综合精品麻豆| 国产福利视频一区二区三区| 国产最新精品免费| 欧美日韩一区在线观看| 成熟亚洲日本毛茸茸凸凹| 中文字幕中文字幕一区| 欧美成人福利视频| 国产成人免费av在线| 9人人澡人人爽人人精品| 在线影院国内精品| 午夜精品免费在线| 久久久久久久精| 欧美影院午夜播放| 粉嫩av一区二区三区在线播放| 亚洲一级二级在线| 日韩一区二区中文字幕| 久久99国产精品尤物| 亚洲va韩国va欧美va精品| 日本福利一区二区| 中文字幕高清一区| 欧美日韩精品一区二区三区蜜桃 | 99精品久久免费看蜜臀剧情介绍| 欧美精品黑人性xxxx| 欧美变态tickling挠脚心| 亚洲一区二区在线观看视频| 欧美日韩免费一区二区三区视频| 国产欧美一区二区精品婷婷| 久久精品视频在线看| 国产69精品久久777的优势|