99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 Scene Recognition

時間:2024-01-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP3173 23F&#160;代寫、代做 C++設計程序
  • 下一篇:代寫文華策略 代寫開拓者量化交易 代編金字塔公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                中文字幕 久热精品 视频在线| 国产精品久久免费看| 中文字幕av资源一区| 久久精品72免费观看| 欧美一区二区三区公司| 久久精品国产精品亚洲红杏| 久久亚洲一级片| 国产精品456露脸| 国产精品国产三级国产a | 狠狠色丁香久久婷婷综合_中| 日韩你懂的电影在线观看| 一区视频在线播放| 欧美日本国产一区| 高清在线成人网| 亚洲国产aⅴ天堂久久| 精品免费国产二区三区| 91视频免费播放| 麻豆精品国产91久久久久久| 亚洲欧洲av在线| 欧美xxxxxxxxx| 欧美性生活久久| 成人性生交大片| 激情深爱一区二区| 天天色综合成人网| 亚洲欧美电影一区二区| 欧美成人福利视频| 欧美日韩国产在线播放网站| 99re热这里只有精品免费视频 | 国产一区二区三区在线观看精品| 亚洲区小说区图片区qvod| 欧美精品一区二区不卡| 欧美日韩高清影院| 91在线精品秘密一区二区| 国产在线日韩欧美| 免费看日韩a级影片| 一区二区三区在线视频观看58 | 日韩精品一级二级| 亚洲综合视频在线观看| 国产精品国产三级国产a| 久久人人97超碰com| 欧美一级精品在线| 欧美老年两性高潮| 欧美日韩一区二区三区免费看| 国产·精品毛片| 国产麻豆一精品一av一免费| 美女精品一区二区| 亚洲成人精品一区| 亚洲一区二区精品久久av| 国产精品久久久久国产精品日日 | 亚洲午夜免费电影| 欧美精品自拍偷拍动漫精品| 成人午夜视频网站| 成人激情黄色小说| 麻豆国产欧美日韩综合精品二区| 日韩黄色小视频| 亚洲欧美另类在线| 亚洲一区二区成人在线观看| 国产欧美视频一区二区三区| 国产精品视频第一区| 久久一区二区三区国产精品| 久久婷婷国产综合精品青草| 555www色欧美视频| 精品99久久久久久| 日韩午夜在线影院| 欧美国产日韩精品免费观看| 精品成人免费观看| 亚洲欧洲精品一区二区三区| 国产日韩成人精品| 亚洲卡通动漫在线| 亚洲三级电影全部在线观看高清| 亚洲男人天堂av网| 亚洲品质自拍视频| 蜜桃免费网站一区二区三区| 国产精品一区二区果冻传媒| 国产精品综合久久| 在线观看日韩av先锋影音电影院| 一本一道久久a久久精品| 欧美人与z0zoxxxx视频| 69堂成人精品免费视频| 精品国产凹凸成av人网站| 精品国产乱码久久久久久图片 | 91浏览器在线视频| 91亚洲永久精品| 91国内精品野花午夜精品| 在线观看日韩精品| 欧美裸体一区二区三区| 91麻豆精品国产自产在线观看一区| 欧美日韩久久一区| 欧美日韩一级片在线观看| 欧美伦理电影网| 欧美xxxx老人做受| 欧美国产日韩一二三区| 一区二区三区在线不卡| 亚洲国产综合人成综合网站| 日韩福利电影在线| 国产一区二区三区在线观看精品| 精品视频一区 二区 三区| 欧美一区二区在线看| 2欧美一区二区三区在线观看视频| 精品国产一二三区| 国产精品国产三级国产| 亚洲成av人片在线观看无码| 久久国产精品免费| 99久久免费精品| 日韩欧美电影一区| 国产精品国产三级国产aⅴ入口 | 色综合咪咪久久| 欧美高清一级片在线| 国产日韩欧美亚洲| 日韩精品久久久久久| 丁香天五香天堂综合| 色婷婷久久一区二区三区麻豆| 7777精品伊人久久久大香线蕉 | 91精品国产乱码| 在线电影一区二区三区| 亚洲综合免费观看高清完整版在线| 日韩高清不卡在线| 成人av网站在线观看免费| 欧美色窝79yyyycom| 精品国产一区二区三区四区四| 中文字幕亚洲电影| 久久99热99| 欧美日韩一区在线观看| 国产精品私人影院| 九色综合狠狠综合久久| 国产精品一色哟哟哟| 国产喷白浆一区二区三区| 免费三级欧美电影| 91福利精品视频| 国产精品久久久久天堂| 久久国产三级精品| 欧美一区二区三区色| 一区二区三区国产| 九九九精品视频| 国产偷国产偷精品高清尤物| 天堂午夜影视日韩欧美一区二区| 99久久国产综合色|国产精品| 337p日本欧洲亚洲大胆色噜噜| 天堂av在线一区| 在线播放一区二区三区| 亚洲一区二区三区四区五区黄| aaa欧美大片| 亚洲高清三级视频| 欧美男人的天堂一二区| 亚洲精品视频自拍| 色婷婷久久久综合中文字幕 | 精品国产sm最大网站免费看| 美日韩一区二区| 从欧美一区二区三区| 欧美另类z0zxhd电影| 亚洲国产婷婷综合在线精品| 欧美图片一区二区三区| 一区二区三区波多野结衣在线观看 | 亚洲综合色视频| 一本色道久久综合亚洲91| 中文字幕欧美一区| eeuss鲁片一区二区三区在线观看 eeuss鲁片一区二区三区在线看 | gogo大胆日本视频一区| 国产精品热久久久久夜色精品三区| 国产黄色精品网站| 中文字幕不卡在线| caoporn国产精品| 亚洲日本在线观看| 在线观看国产一区二区| 亚洲国产一区视频| 99精品视频一区| 亚洲成人av中文| 日韩欧美亚洲国产另类| 九九九久久久精品| 中文字幕一区免费在线观看| 色哦色哦哦色天天综合| 日日摸夜夜添夜夜添国产精品 | 成人av片在线观看| 一区二区三区在线免费播放 | 欧美一区二区三区影视| 激情综合一区二区三区| 欧美韩国日本不卡| 色婷婷综合久久久久中文一区二区| 亚洲综合视频网| 精品国产亚洲在线| 91免费视频网址| 人人超碰91尤物精品国产| 国产午夜精品一区二区三区四区| 99久久伊人网影院| 日韩国产成人精品| 国产日韩欧美制服另类| 欧美性videosxxxxx| 国产伦精品一区二区三区免费| 国产精品国产三级国产三级人妇| 欧美日韩和欧美的一区二区| 国产乱子伦一区二区三区国色天香 | 在线播放日韩导航| 成人国产精品视频| 日本vs亚洲vs韩国一区三区二区| 国产精品天美传媒沈樵| 91麻豆精品国产91久久久久| 成人综合在线视频| 久久国产精品99久久久久久老狼 | ...中文天堂在线一区| 欧美一级二级在线观看|