99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫 Scene Recognition

時間:2024-01-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2 (Group) – Scene Recognition
Brief
This is a group coursework: please work in teams of four people.
Due date: Wednesday 10th January, 16:00.
Development data download: training.zip in the coursework (CW) folder
Testing data download: testing.zip in the CW folder
Required files: report.pdf; code.zip; run1.txt; run2.txt; run3.txt
Credit: 25% of overall module mark
Overview
The goal of this project is to introduce you to image recognition. Specifically, we will examine the
task of scene recognition starting with very simple methods -- tiny images and nearest neighbour
classification -- and then move on to techniques that resemble the state-of-the-art.
This coursework will run following the methodology used in many current scientific benchmarking
competitions/evaluations. You will be provided with a set of labelled development images from
which you are allowed to develop and tune your classifiers. You will also be provided with a set of
unlabelled images for which you will be asked to produce predictions of the correct class.
Details
You will need to write software that classifies scenes into one of 15 categories. We want you to
implement three different classifiers as described below. You will then need to run each classifier
against all the test images and provide a prediction of the class for each image.
Data
The training data consists of 100 images for each of the 15 scene classes. These are arranged in
directories named according to the class name. The test data consists of 2985 images. All the
images are provided in JPEG format. All the images are grey-scale, so you don't need to consider
colour.
Objective measure
The key classification performance indicator for this task is average precision; this is literally the
proportion of number of correct classifications to the total number of predictions (i.e. 2985).
Run conditions
As mentioned above, you need to develop and run three different classifiers. We'll refer to the
application of a classifier to the test data as a "run".
Run #1: You should develop a simple k-nearest-neighbour classifier using the "tiny image" feature.
The "tiny image" feature is one of the simplest possible image representations. One simply crops
each image to a square about the centre, and then resizes it to a small, fixed resolution (we
recommend 16x16). The pixel values can be packed into a vector by concatenating each image
row. It tends to work slightly better if the tiny image is made to have zero mean and unit length.
You can choose the optimal k-value for the classifier.
Run #2: You should develop a set of linear classifiers (an ensemble of 15 one-vs-all classifiers)
using a bag-of-visual-words feature based on fixed size densely-sampled pixel patches. We
recommend that you start with 8x8 patches, sampled every 4 pixels in the x and y directions. A
sample of these should be clustered using K-Means to learn a vocabulary (try ~500 clusters to
start). You might want to consider mean-centring and normalising each patch before
clustering/quantisation. Note: we're not asking you to use SIFT features here - just take the pixels
from the patches and flatten them into a vector & then use vector quantisation to map each patch
to a visual word.
Run #3: You should try to develop the best classifiers you can! You can choose whatever feature,
encoding and classifier you like. Potential features: the GIST feature; Dense SIFT; Dense SIFT in a
Gaussian Pyramid; Dense SIFT with spatial pooling (commonly known as PHOW - Pyramid
Histogram of Words), etc. Potential classifiers: Naive bayes; non-linear SVM (perhaps using a linear
classifier with a Homogeneous Kernel Map), ...
Run prediction format
The predictions for each run must be written to a text file named runX.txt (where X is the run
number) with the following format:
For example:
<image_name> <predicted_class>
<image_name> <predicted_class>
<image_name> <predicted_class>
...
0.jpg tallbuilding
1.jpg forest
2.jpg mountain
3.jpg store
4.jpg store
5.jpg bedroom
...
Restrictions
• You are not allowed to use the testing images for anything other than producing the final
predictions They must not be used for either training or learning feature encoding.
The report
The report must be no longer than 4 sides of A4 with the given Latex format for CW2, and must be
submitted electronically as a PDF. The report must include:
• The names and ECS user IDs of the team members
• A description of the implementation of the classifiers for the three runs, including information on
how they were trained and tuned, and the specific parameters used for configuring the feature
extractors and classifiers. We expect that your "run 3" section will be considerably longer than the
descriptions of runs 1 & 2.
• A short statement detailing the individual contributions of the team members to the coursework.
What to hand in
You need to submit to ECS Handin the following items:
• The group report (as a PDF document in the CVPR format same as CW2; max 4 A4 sides, no
appendix)
• Your code enclosed in a zip file (including everything required to build/run your software and to
train and use your classifiers; please don't include binaries or any of the images!)
• The run prediction files for your three runs (named "run1.txt", "run2.txt" and "run3.txt").
• A plain text file listing the user ids (e.g. xx1g20) of the members of your team; one per line.
Marking and feedback
Marks will be awarded for:
• Successful completion of the task.
• Well structured and commented code.
• Evidence of professionalism in implementation and reporting.
• Quality and contents of the report.
• The quality/soundness/complexity of approach used for run 3.
Marks will not be based on the actual performance of your approach (although you can expect to
lose marks if runs 1 and 2 are way off our expectations or you fail to follow the submission
instructions). We will open the performance rankings for run 3. !"#$
Standard ECS late submission penalties apply.
Individual feedback will be given to each team covering the above points. We will also give overall
feedback on the approaches taken in class when we announce the winner!
Useful links
• Matlab
o Image processing toolbox tutorials
o Recommended: VLFeat
§ Example of using VLFeat to perform classification
o Linear and non-linear SVMs
• Python
o numpy, PIL, sklearn (Scikit-learn), OpenCV, etc.
• C and C++
o OpenCV
o Recommended: VLFeat
o Example of using VLFeat to perform classification (Note this code is Matlab, but most of the
functionality is available in the C/C++ API)
• Java
o Recommended: OpenIMAJ
§ Chapter 12 of the tutorial deals with image classification
o BoofCV
Questions
If you have any problems/questions, use the Q&A channel on Teams 

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:COMP3173 23F&#160;代寫、代做 C++設計程序
  • 下一篇:代寫文華策略 代寫開拓者量化交易 代編金字塔公式
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲午夜免费视频| 欧美日本一区| 亚洲精品一二三| 国产精品一区二区在线| 欧美精品自拍偷拍动漫精品| 欧美在线综合| 午夜国产一区| 正在播放亚洲一区| 亚洲国产一区二区精品专区| 国产精一区二区三区| 欧美日韩精品综合在线| 久热国产精品| 久久午夜视频| 久久久99爱| 久久精品国产综合精品| 欧美一区二区三区喷汁尤物| 亚洲天堂av综合网| 亚洲午夜激情| 亚洲一区在线直播| 亚洲天堂av综合网| 亚洲欧美日韩精品久久久久| 亚洲一区二区三区777| 亚洲无线一线二线三线区别av| 亚洲欧洲日韩在线| 亚洲人午夜精品免费| 亚洲国产精品视频一区| 亚洲国产天堂久久综合| 亚洲日本国产| 亚洲精品字幕| 一区二区不卡在线视频 午夜欧美不卡在 | 国产视频丨精品|在线观看| 国产精品成人一区二区三区吃奶 | 欧美日韩久久不卡| 欧美激情1区| 欧美日韩亚洲免费| 国产精品护士白丝一区av| 国产精品免费观看视频| 国产欧美精品在线| 影音先锋中文字幕一区| 亚洲片国产一区一级在线观看| 亚洲激情国产精品| 一本不卡影院| 欧美一区三区三区高中清蜜桃 | 久久免费精品日本久久中文字幕| 久久婷婷综合激情| 欧美激情视频一区二区三区在线播放| 欧美乱大交xxxxx| 国产精品久久久久7777婷婷| 国产日韩欧美高清| 亚洲黄页视频免费观看| 国产精品99久久久久久人| 香蕉精品999视频一区二区| 久久成人免费| 欧美日韩国产不卡在线看| 国产精品青草综合久久久久99| 国产亚洲在线观看| 99在线热播精品免费99热| 亚洲欧美在线x视频| 麻豆亚洲精品| 国产精品久久久久一区| 亚洲第一天堂av| 亚洲综合三区| 欧美丰满少妇xxxbbb| 国产精品久久激情| 亚洲欧洲日产国产网站| 久久精品国产视频| 国产精品久久久一本精品| 亚洲成人在线网| 香港久久久电影| 欧美午夜电影网| 亚洲日韩第九十九页| 久久精品国产精品亚洲综合| 欧美日本免费| 亚洲第一精品影视| 久久精品亚洲一区二区| 国产精品久久久久久久免费软件| 亚洲高清一区二区三区| 久久国产精品久久久久久电车| 欧美日韩国产色综合一二三四 | 亚洲欧洲日韩在线| 久久久午夜精品| 国产日韩1区| 亚洲欧美在线网| 国产精品久久久久秋霞鲁丝| 一区二区冒白浆视频| 欧美激情国产日韩| 91久久精品国产91性色tv| 久久综合久久美利坚合众国| 国产主播一区| 久久久青草青青国产亚洲免观| 国产精品亚洲美女av网站| 亚洲一区视频在线观看视频| 欧美日韩中国免费专区在线看| 91久久精品国产91性色tv| 免费成人av在线看| 亚洲国产日韩欧美在线99| 免费成人你懂的| 亚洲欧洲一区二区在线播放| 免费高清在线一区| 亚洲区一区二区三区| 欧美jizz19性欧美| 亚洲精品中文在线| 欧美精品免费看| 亚洲国产一成人久久精品| 欧美精品国产精品日韩精品| 日韩视频不卡| 欧美视频手机在线| 亚洲免费视频网站| 国产一区二区三区高清 | 精品69视频一区二区三区| 久久久久亚洲综合| 亚洲二区免费| 欧美日韩亚洲一区在线观看| 亚洲伊人伊色伊影伊综合网| 国产精品五月天| 久久久久久9| 亚洲激情电影中文字幕| 欧美日韩精品免费观看视频完整 | 亚洲综合第一| 狠狠色丁香婷婷综合久久片| 欧美va天堂| 亚洲男人av电影| 亚洲国产va精品久久久不卡综合| 欧美黑人国产人伦爽爽爽| 一区二区三区.www| 国产综合色产| 欧美色区777第一页| 欧美一级黄色网| 亚洲国产精品小视频| 国产精品美女久久久久久2018 | 欧美精品一区二区三区蜜桃| 亚洲专区免费| 亚洲娇小video精品| 国产精品三区www17con| 另类春色校园亚洲| 亚洲自拍偷拍福利| 亚洲娇小video精品| 国产精品亚洲综合| 欧美日韩免费在线观看| 久久精品30| 亚洲制服少妇| 99精品国产热久久91蜜凸| 国产一区二区三区久久久| 欧美视频不卡中文| 欧美福利电影网| 久久九九全国免费精品观看| 夜夜嗨av一区二区三区四季av| 国产一区二区三区四区| 国产精品久久久久一区二区三区共| 欧美成人网在线| 久久久午夜视频| 久久国产夜色精品鲁鲁99| 一区二区三区国产在线| 亚洲高清不卡在线观看| 国产一区二区丝袜高跟鞋图片| 国产精品视频免费在线观看| 欧美激情第4页| 欧美精品电影在线| 欧美精品三区| 欧美精品久久久久久久久老牛影院| 久久精品国产99国产精品澳门| 欧美一进一出视频| 香蕉尹人综合在线观看| 亚洲女人天堂av| 亚洲影院污污.| 午夜久久久久| 欧美在线视频全部完| 欧美在线视频一区| 欧美专区第一页| 噜噜噜噜噜久久久久久91| 美女精品自拍一二三四| 免费在线欧美黄色| 欧美福利视频在线| 欧美久久久久久久久| 欧美日韩1区2区| 国产精品久久看| 国模吧视频一区| 亚洲高清电影| 亚洲午夜精品久久| 欧美在线亚洲综合一区| 久久久精品免费视频| 久久亚洲高清| 欧美日韩国产在线播放网站| 国产精品久久久久aaaa| 国产亚洲一二三区| 亚洲国产黄色| 亚洲一级影院| 久久久亚洲精品一区二区三区| 美女91精品| 欧美午夜宅男影院在线观看| 国产日产欧美一区| 亚洲精美视频| 欧美一级在线视频| 欧美二区在线| 国产日韩1区| 日韩视频在线观看一区二区| 小黄鸭精品aⅴ导航网站入口| 久久网站热最新地址| 国产精品久久二区二区| 永久免费毛片在线播放不卡|