99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

BUSI1125代做、代寫(xiě)Java/python程序語(yǔ)言

時(shí)間:2023-12-23  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



BUSI1125 Softwares and Tools for Data Analytics
INDIVIDUAL ASSIGNMENT
Autumn 2023/24

This individual assignment carries 100% of the total marks of this module.

Students are required to download 2 different datasets, and analyse each dataset using a
randomly assigned data analytics software.


Dataset 1 (poverty): Eradicating extreme poverty for all people everywhere by 2030 is a
pivotal goal of the 2030 Agenda for Sustainable Development. It has been recognised that
ending poverty must go hand-in-hand with strategies that build economic growth and address
a range of social needs including education, health, social protection, and job opportunities,
while tackling climate change and environmental protection. As a data analyst your objective
is to conduct an exploratory analysis to better understand the relationships/associations
between the level of income (outcome) and the selected socio-economic factors (features).

Dataset 1, extracted from the World Bank Development Indicators, includes the following
variables for 151 countries.

Variable Name Description
country Name of the country
region Region of the country
comp_edu Compulsory education, duration (years)
female_labour Ratio of female to male labour force participation rate (%)
agri_value_added Agriculture, forestry, and fishing, value added (% of GDP)
political_stability Political Stability and Absence of Violence/Terrorism: Estimated index
income_group Income group classification by the World Bank based on gross national
income (GNI) per capita (High income, Upper-middle income, Lower-
middle income, Low income)
Dataset 1 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/poverty/main/poverty.csv


Dataset 2 (wage): One of the other UN Sustainable Development Goals is about promoting
inclusive and sustainable economic growth, employment and decent work for all (Decent work
and Economic Growth). Decent work means opportunities for everyone to get work that is
productive and delivers a fair income, security in the workplace and social protection for
families, better prospects for personal development and social integration. As a data analyst
your objective is to conduct an exploratory analysis to better understand the
relationships/associations between the individual’s wage (outcome) and the selected
demographic factors (features).

Dataset 2, extracted from The United States National Longitudinal Surveys, includes the
following variables for 935 individuals.

Variable Name Description
wage Average weekly earnings (in US$)
hours Average weekly working hours
exper Years of working experience
age Age in years
marital Marital status (Married, Single)
gender Gender (Male, Female)
education Level of education (High School, College, Graduate, Post-Graduate)

Dataset 2 is available on the module Moodle page or download directly from:
https://raw.githubusercontent.com/mmchit/wage/main/wage.csv



Assignment requirements
Students are required to import the dataset and analyse with the assigned software (R or
Python). For descriptive and exploratory analytics and interpretations, students are required
to:

1. check data quality issues (missing values, data entry errors, inconsistencies, etc.),
perform necessary data cleansing, and briefly explain your data cleaning strategy.
2. identify the type of variables, provide appropriate summary statistics (all measures of
location and dispersion and frequencies) of each variables with appropriate
visualisations and interpretations.
3. identify the objectives of analytics based on the given dataset and scenario and identify
the relevant/appropriate relationships/associations between the outcome and feature
variables, conduct exploratory analysis with appropriate visualisations, and present
and interpret the analyses (based on DIKW pyramid).
4. write up a data analytics report with clear and effective communication.

The 1500-word assignment should include the following two sub-sections.
 Section 1: Report of descriptive and exploratory analytics of Dataset 1 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)
Section 2: Report of descriptive and exploratory analytics of Dataset 2 using the
assigned software with appropriate visualisations, and interpretations (around 750
words)


Students are also required to submit R-scripts and Jupyter Notebook files via Moodle
submission box.

Deadline Date for Submission of Coursework
Your coursework needs to be submitted electronically via the Module Moodle page. See the
Student Services website and the programme handbook for further details of this process.
The deadline for coursework submission is 3:30pm on Wednesday, 27th of December
2023. Late submission will attract marks deduction penalty unless an extension has been
approved by Student Services. Please familiarise yourself with the extenuating circumstances
policy and process for submitting a claim.

Five marks will be deducted for each working day (or part thereof) if coursework is submitted
after the official deadline without an extension having been obtained. Except in exceptional
circumstances, late submission penalties will apply automatically unless a claim for
extenuating circumstances is made before the assessment deadline.


Coursework Submission Requirements:
A maximum word count of the assignment is 1500 words and must be adhered to.
The penalty for exceeding this limit is a five mark deduction for exceeding up to 300
words, 10 marks deduction for exceeding between 301 and 500 words, and 15
marks reduction for exceeding over 501 words.
The actual word count of the assignment must be stated by the student on the first
page (cover sheet) of the assignment.
The overall word count does include citations and quotations.
The overall word count does not include the references or bibliography at the
end of the coursework.
 The word count does not include figures and tables with numeric values and the titles
of figure and table. Any statement, interpretation, and explanation presented in
a figure or a tabular form will be included in the overall wordcount,
Appendices (mostly supporting materials that are not directly related to the assignment
and will not be considered in marking) are not included in the overall word count.
Students should prepare and submit their coursework assessments via Moodle in
the following format:
Font: Verdana 11 point
Spacing: 1.5 spaced
Margins: Normal (2.5 cm)
Referencing: Harvard citation style

Plagiarism will not be tolerated. Please consult the Business School Undergraduate Student
Handbook for more guidelines on how to present and submit your essays. It is the strong
advice of the Business School that you should avoid plagiarism by engaging in ethical and
professional academic practice.
In accordance with the University’s Quality Manual, in normal circumstances, marked
coursework and associated feedback will be returned to you within 15 working days of the
published submission deadline. Therefore, students submitting work before the published
deadline should not have an expectation that early submission will result in earlier return of
work. Where coursework will not be returned within 15 working days for good reason (for
example in circumstances where a student has been granted an extension, illness of module
convenor, or lengthy pieces of coursework), students will be informed of the timescale for the
return of the coursework and associated feedback.
Additional circumstances where coursework may not be returned within 15 working days for
good reason can include the University closure dates. Therefore, where this applies, you will
be informed in advance of the date coursework feedback will be provided to you.
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:公認(rèn)口碑最好的十大莆田微商,推薦十個(gè)知名的莆田鞋商家
  • 下一篇:代寫(xiě)公式指標(biāo) 代做選股公式 請(qǐng)人做股標(biāo)指標(biāo)
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士2號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
    合肥機(jī)場(chǎng)巴士1號(hào)線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美午夜片在线看| 欧美日韩黄色一区二区| 91豆麻精品91久久久久久| 亚洲欧洲www| 日本韩国精品在线| 亚洲成人第一页| 欧美成va人片在线观看| 国产一区二区三区在线观看免费 | 亚洲欧美福利一区二区| 成人免费视频免费观看| 亚洲欧美经典视频| 91精品国产手机| 精品亚洲成a人在线观看| 欧美极品美女视频| 欧美日韩一区高清| 国产精品一区二区在线看| 亚洲欧洲综合另类在线| 91精选在线观看| 99热在这里有精品免费| 日韩精品乱码免费| 日韩毛片高清在线播放| 欧美一级久久久| 一本到三区不卡视频| 狠狠色狠狠色综合| 亚洲线精品一区二区三区八戒| 亚洲视频一区二区在线| 欧美日韩成人高清| 国产91精品在线观看| 日日嗨av一区二区三区四区| 亚洲精品久久嫩草网站秘色| 久久久精品日韩欧美| 日韩一区二区在线观看| 欧美日韩在线播| 色偷偷88欧美精品久久久| 国产裸体歌舞团一区二区| 天天综合色天天综合| 自拍偷自拍亚洲精品播放| 久久久五月婷婷| 日韩欧美一区二区三区在线| 欧美日韩精品久久久| 日本韩国欧美在线| 一本大道久久精品懂色aⅴ| 成人在线综合网站| 狠狠色狠狠色综合日日91app| 91精品综合久久久久久| 欧美中文字幕亚洲一区二区va在线| 中文字幕亚洲不卡| 亚洲国产成人一区二区三区| 久久先锋影音av鲁色资源| 日韩一区和二区| 欧美一级日韩不卡播放免费| 欧美日韩一级片在线观看| 日本电影欧美片| 欧美三级视频在线观看 | 欧美韩国日本不卡| 日韩一区二区麻豆国产| 欧美亚洲愉拍一区二区| 91影视在线播放| 在线一区二区视频| 欧美性xxxxx极品少妇| 欧洲激情一区二区| 欧美日本国产一区| 在线电影欧美成精品| 欧美一级日韩免费不卡| 欧美大度的电影原声| 久久久美女毛片| 欧美高清在线精品一区| 国产精品电影一区二区| 亚洲另类在线制服丝袜| 免费观看91视频大全| 亚洲v中文字幕| 六月丁香综合在线视频| 国产久卡久卡久卡久卡视频精品| 久久久不卡影院| 国产三级久久久| 亚洲人成在线播放网站岛国| 婷婷久久综合九色综合伊人色| 精品日韩99亚洲| 日本一区二区成人在线| 中文字幕一区二区三| 亚洲亚洲精品在线观看| 麻豆久久久久久| 不卡av电影在线播放| 欧美性videosxxxxx| 日韩一级片在线观看| 国产精品久线观看视频| 亚洲国产成人高清精品| 国产一区二区中文字幕| 欧美日韩精品三区| 中文字幕av一区 二区| 夜夜夜精品看看| 国产成人免费视频精品含羞草妖精| 日本在线不卡视频一二三区| 国产一区二区三区视频在线播放| 亚洲一级二级三级在线免费观看| 国产午夜精品理论片a级大结局| 色综合久久久久久久| 日韩午夜电影在线观看| 国产精品传媒入口麻豆| 日本不卡的三区四区五区| 91在线视频官网| 久久久久久久久久美女| 亚洲成av人片一区二区三区| 粉嫩aⅴ一区二区三区四区| 欧美精品tushy高清| 亚洲日本中文字幕区| 国产suv精品一区二区6| 日韩欧美精品在线| 日韩国产精品91| 欧美色倩网站大全免费| 欧美高清在线精品一区| 国产尤物一区二区| 日韩三级视频在线观看| 亚洲高清免费观看高清完整版在线观看 | 国产精品1区2区| 欧美一区二区三区视频在线 | 国产在线一区二区综合免费视频| 亚洲第一激情av| 一本大道久久a久久综合| 国产精品乱码久久久久久| 国产在线观看一区二区| 3d动漫精品啪啪| 日本欧美肥老太交大片| 7799精品视频| 日本欧美一区二区三区| 91精品国产免费久久综合| 日本亚洲三级在线| 精品久久一区二区三区| 久久国产欧美日韩精品| 精品国产欧美一区二区| 国产在线视频不卡二| 久久久久久**毛片大全| 国产一区二区在线免费观看| 国产亚洲制服色| a亚洲天堂av| 亚洲6080在线| 日韩久久久久久| 国产成人精品影院| 国产精品电影院| 欧美在线一区二区三区| 日韩黄色免费电影| 精品国产免费人成在线观看| 国产日韩欧美一区二区三区乱码 | 一区二区三区国产精华| 91视视频在线直接观看在线看网页在线看| 韩国精品一区二区| 久久精品一区二区三区不卡 | 三级不卡在线观看| 777奇米成人网| 国产呦精品一区二区三区网站| 粉嫩av一区二区三区粉嫩| 中文字幕国产精品一区二区| 色先锋资源久久综合| 亚洲观看高清完整版在线观看| 国产91在线|亚洲| 亚洲九九爱视频| 欧美一二三区在线| 91热门视频在线观看| 奇米色777欧美一区二区| 国产日韩欧美一区二区三区综合| 日韩成人免费电影| 久久亚区不卡日本| 欧美天天综合网| 国产精品88888| 日产国产高清一区二区三区| 国产女主播在线一区二区| 欧美特级限制片免费在线观看| 日韩一区在线免费观看| 欧美精品一卡两卡| 成人高清视频免费观看| 亚洲成人动漫精品| 一区在线播放视频| www久久久久| 欧美精三区欧美精三区| 不卡一二三区首页| 国产综合久久久久久鬼色 | 国产精品久久久久久久久免费相片 | 1区2区3区国产精品| 欧美大片拔萝卜| 在线成人小视频| 在线亚洲高清视频| 成人禁用看黄a在线| 久久国产人妖系列| 日韩国产在线观看| 亚洲国产精品久久久久秋霞影院| 91麻豆精品在线观看| 韩国午夜理伦三级不卡影院| 首页欧美精品中文字幕| 亚洲一区在线视频| 亚洲免费观看高清完整| 国产欧美日韩不卡免费| 欧美不卡一二三| 91精品国产入口在线| 欧美男男青年gay1069videost| 亚洲综合在线视频| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 日本v片在线高清不卡在线观看| 欧美亚洲一区二区三区四区| av在线一区二区| 国产激情视频一区二区在线观看|