99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫DAT 560M、代做R編程語言

時(shí)間:2023-12-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CSCI 2122代寫、代做C++設(shè)計(jì)程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区日韩电影| 狠狠色狠狠色综合| 成人免费毛片嘿嘿连载视频| 久久久久久久久久看片| 成人黄色网址在线观看| 国产精品不卡在线观看| 色老汉av一区二区三区| 日日夜夜精品免费视频| 欧美剧情电影在线观看完整版免费励志电影| 亚洲一区免费观看| 日韩欧美国产1| 国产成人无遮挡在线视频| 亚洲欧洲精品一区二区三区| 国产福利一区二区三区视频| 国产精品久久久99| 欧美一区中文字幕| 粉嫩aⅴ一区二区三区四区 | 欧美xxxxxxxx| 91麻豆精品秘密| 九一九一国产精品| 亚洲韩国精品一区| 日本一区二区成人| 日韩欧美中文一区二区| 一道本成人在线| 国产成人综合在线播放| 日本人妖一区二区| 亚洲午夜精品久久久久久久久| 国产欧美在线观看一区| 在线成人免费视频| 色综合久久88色综合天天6| 国产一区不卡视频| 捆绑调教一区二区三区| 亚欧色一区w666天堂| 成人欧美一区二区三区1314| 久久久久久99精品| 欧美一级午夜免费电影| 欧美中文字幕亚洲一区二区va在线| 成人中文字幕合集| 国产另类ts人妖一区二区| 麻豆专区一区二区三区四区五区| 亚洲综合另类小说| 亚洲欧美电影一区二区| 中文字幕日韩一区二区| 欧美韩国一区二区| 欧美激情一区二区| 欧美韩国日本不卡| 亚洲国产精品ⅴa在线观看| 久久久久久久久久久久电影 | 中文乱码免费一区二区| wwwwww.欧美系列| 久久久久国产精品麻豆| 欧美精品一区二区久久久| 日韩手机在线导航| 日韩一区二区免费在线电影 | 国产精品一品二品| 国产一区二区女| 国产馆精品极品| 白白色亚洲国产精品| av一本久道久久综合久久鬼色| 国产精品99久久久久| www.久久精品| 色播五月激情综合网| 欧美中文字幕一区二区三区| 欧美浪妇xxxx高跟鞋交| 欧美成人综合网站| 久久久国产综合精品女国产盗摄| 国产偷国产偷精品高清尤物 | 91色在线porny| 91在线免费视频观看| 欧美日韩一区二区欧美激情| 色噜噜狠狠色综合欧洲selulu| 在线看国产一区| 91麻豆精品国产91久久久更新时间| 538prom精品视频线放| 日韩女优av电影| 国产精品久久久久久久午夜片 | 亚洲精品国产高清久久伦理二区| 亚洲色图色小说| 亚洲亚洲人成综合网络| 久久精品国产亚洲aⅴ| 丁香啪啪综合成人亚洲小说 | www.欧美亚洲| 欧美日韩一区二区欧美激情| 日韩美女在线视频 | 久久久99精品久久| 亚洲日本一区二区| 精品影视av免费| 91色九色蝌蚪| 欧美一区二区福利在线| 中文字幕+乱码+中文字幕一区| 亚洲一级二级在线| 粉嫩绯色av一区二区在线观看| 欧美精品乱码久久久久久| 国产欧美一区二区三区网站| 午夜一区二区三区在线观看| www.成人网.com| 日韩精品一区二区三区视频在线观看 | 国产91综合网| 日韩欧美一级二级三级| 亚洲自拍偷拍综合| 成人久久久精品乱码一区二区三区| 欧美视频一区二区在线观看| 亚洲人成网站影音先锋播放| 国产成人av福利| 日韩一级完整毛片| 亚洲大片在线观看| 色综合激情五月| 亚洲天堂av老司机| 国产v日产∨综合v精品视频| 26uuu精品一区二区| 精品一二三四在线| 日韩一区二区三区免费看| 亚洲精品视频自拍| 99r精品视频| 国产精品二区一区二区aⅴ污介绍| 国产美女主播视频一区| 欧美人与性动xxxx| 亚洲国产精品综合小说图片区| 色综合久久久久久久久久久| 中文一区二区完整视频在线观看| 国产九色sp调教91| 久久精品水蜜桃av综合天堂| 韩国女主播一区| 国产女人18毛片水真多成人如厕 | 亚洲一区视频在线| 欧美自拍偷拍午夜视频| 亚洲午夜久久久久久久久久久 | 欧美三级电影网| 亚洲成人免费观看| 欧美四级电影网| 午夜精品福利久久久| av在线不卡电影| 伊人夜夜躁av伊人久久| 日本高清不卡aⅴ免费网站| 亚洲综合在线电影| 欧美日韩国产一级二级| 美女www一区二区| 2023国产精品视频| 波多野结衣亚洲| 亚洲一区在线观看视频| 日韩免费看的电影| 国产另类ts人妖一区二区| 最近中文字幕一区二区三区| 欧洲亚洲精品在线| 精品在线一区二区三区| 欧洲色大大久久| 亚洲精品国产a久久久久久 | 9i看片成人免费高清| 亚洲蜜臀av乱码久久精品蜜桃| 欧美精品色综合| 色婷婷国产精品| 91精品国产色综合久久不卡电影| 蜜臀av亚洲一区中文字幕| 色狠狠av一区二区三区| 亚洲午夜羞羞片| 日韩亚洲欧美中文三级| 国产福利一区二区三区视频在线| 中文字幕一区二区三区不卡| 欧美日韩精品欧美日韩精品| 国产一区91精品张津瑜| 亚洲色图都市小说| 69堂精品视频| 91丨九色丨黑人外教| 久久99精品国产麻豆不卡| 亚洲欧美日韩一区二区三区在线观看| 欧美久久免费观看| 99精品国产视频| 国产综合久久久久久鬼色| 亚洲国产精品一区二区久久恐怖片| 久久综合九色综合久久久精品综合 | 国产精品国产a级| 日韩欧美一级精品久久| 91久久国产综合久久| 国产在线播精品第三| 天使萌一区二区三区免费观看| 国产精品乱码人人做人人爱| 欧美一级在线视频| 欧美优质美女网站| 成av人片一区二区| 另类小说图片综合网| 亚洲宅男天堂在线观看无病毒| 国产婷婷色一区二区三区在线| 欧美精品99久久久**| 91成人免费网站| 99re成人在线| 国产成人一级电影| 国产成人一级电影| 极品美女销魂一区二区三区| 亚洲国产日韩a在线播放 | 中文字幕在线观看一区| 久久久99精品免费观看不卡| 欧美一区二区三区男人的天堂| 日本丰满少妇一区二区三区| 不卡电影一区二区三区| 成人精品在线视频观看| 国产精品一区二区在线播放| 国产成人午夜视频| 成人av集中营| 91在线丨porny丨国产| 91在线国产观看|