99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

MATH4063代做、C++編程語言代寫

時間:2023-12-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



University of Nottingham
School of Mathematical Sciences
MATH**3 Scientific Computation and C++
Submission Date: Monday 8th January 2024, 15:00 (GMT) Assessed Coursework 2
The following questions are to be used for the coursework assessment in the module MATH**3.
A single zip file containing your answers to the questions below and the code you used to obtain these
answers should be submitted electronically via the MATH**3 Moodle page before the deadline at
the top of this page. You should follow the instructions on the accompanying Coursework Submission
template which is also provided on Moodle. Since this work is assessed, your submission must be
entirely your own work (see the University’s policy on Academic Misconduct).
The style and efficiency of your programs is important. A barely-passing solution will include attempts
to write programs which include some of the correct elements of a solution. A borderline distinction
solution will include working code that neatly and efficiently implements the relevant algorithms, and
that shows evidence of testing.
An indication is given of the weighting of each question by means of a figure enclosed by square
brackets, e.g. [12]. All non-integer calculations should be done in double precision.
Background Material
If you have further questions about this background material, please ask for clarification.
Approximating Systems of Ordinary Differential Equations
Cauchy problems, also known as Initial Value Problems (IVPs), consist of finding solutions to a system
of Ordinary Differential Equations (ODEs), given suitable initial conditions. We will be concerned
with the numerical approximation of the solution to the IVP
du(t)
dt
= f(t,u(t)) for t ∈ [t
0
, T] with u(t
0
) = u
0
, (1)
where f is a sufficiently well-behaved function that maps [t
0
, T) × R
d
to R
d
, the initial condition
u
0 ∈ R
d
is a given vector, and the integer d ≥ 1 is the dimension of the problem. We assume that
f satisfies the Lipschitz condition
kf(t, w) − f(t,u)k ≤ λkw − uk for all w,u ∈ R
d
,
where λ > 0 is a real constant independent of w and u. This condition guarantees that the problem
(1) possesses a unique solution.
We seek an approximation to the solution u(t) of (1) at Nt + 1 evenly spaced time points in the
interval [t
0
, T], so we set
t
n = t
0 + n ∆t for 0 < n ≤ Nt where ∆t = (T − t
0
)/Nt
.
The scalar ∆t is referred to as the time-step. We use a superscript n to denote an approximation to
u(t) at the time points {t
n},
u
n ≈ u(t
n
), for 0 ≤ n ≤ Nt
,
and we are interested in the behaviour of the error e
n = u
n−u(t
n
). We expect this error to decrease
as the step size ∆t tends to 0: the sequence of approximations {u
n} will be generated by a numerical
method, which will be said to be convergent if
lim
∆t→0+
Nt max
n=0
ke
n
k = 0 ,
where k · k is a generic norm on R
d
.
Forward Euler Method
The simplest numerical scheme for the solution of first-order ODEs is the forward Euler method:
u
n+1 = u
n + ∆t f(t
n
,u
n
) for 0 ≤ n < Nt
, (2)
with initial condition u
0 = u(t
0
). If f is analytic, it can be shown that the forward Euler method is
convergent and
E(∆t) := Nt max
n=0
ke
n
k = O(∆t).
Since the error behaves as O((∆t)
p
) where p = 1, the forward Euler method is said to be an order
1 method. This method may suffer from numerical instabilities, hence the step size ∆t must be set
to a sufficiently small value during computations.
Trapezoidal Method
Numerical instabilities can be reduced (and sometimes removed completely) by using an implicit
numerical scheme. One such scheme is the trapezoidal method:
u
n+1 = u
n +
1
2
∆t

f(t
n
,u
n
) + f(t
n+1
,u
n+1)

for 0 ≤ n < Nt
, (3)
with initial condition u
0 = u(t
0
). This method is implicit because it involves f(t
n+1
,u
n+1), which
generates a system of equations which must be solved to compute u
n+1
.
Approximating Partial Differential Equations
In this coursework you will use the finite difference method to approximate the solution of a range
of time-dependent partial differential equations (PDEs), of the form
∂u
∂t = Lu for (x, t) ∈ [xmin, xmax] × [t
0
, T] , (4)
with u(x, t0
) = u
0
(x) for x ∈ [xmin, xmax] ,
where u = u(x, t) is a real function of one spatial coordinate x and a time coordinate t, L is a linear
differential operator involving only derivatives with respect to x, xmin < xmax and T > t0
are all real
numbers, and u
0
is a given real function of x. Throughout these exercises, only Dirichlet boundary
conditions will be considered, imposed at x = xmin and/or x = xmax (as appropriate to the PDE
being approximated).
We seek an approximation to the spatial differential operator Lu of (4) at Nx + 1 evenly spaced
points in the interval [xmin, xmax], so we set
xi = xmin + i ∆x for 0 ≤ i ≤ Nx where ∆x = (xmax − xmin)/Nx .
The scalar ∆x is referred to as the space step. At time t the approximate solution to the PDE is
a vector of values u(t) ∈ R
Nx+1, in which ui(t) ≈ u(xi
, t). In this coursework, the error in this
approximation will be measured only at the final time, t = T, by the discrete norm
E(∆x, ∆t) :=
1
Nx + 1
X
Nx
i=0
(u
Nt
i − u(xi
, T))2
!1
2
, (5)
in which we have used the notation u
n
i
to indicate the approximation to u(xi
, tn
). This can be used
to estimate the order of the approximation.
The approach which will be used is known as the method of lines, in which the differential operator
Lu is approximated at each spatial point xi to generate a vector of right-hand side functions f(t,u(t))
for a system of ODEs of the form (1). To illustrate this we consider two standard PDEs.
2
A Parabolic PDE for Diffusion
The one-dimensional diffusion equation is given by
∂u
∂t = D

2u
∂x2
for (x, t) ∈ [xmin, xmax] × [t
0
, T] , (6)
with the initial condition u(x, t0
) = u
0
(x) for x ∈ [xmin, xmax] and Dirichlet boundary conditions
u(xmin, t) = u−(t) and u(xmax, t) = u+(t), where D > 0 is a given real constant and u− and u+ are
given real functions, which may depend on time. One standard finite difference approximation of the
spatial derivative leads to the semi-discretisation
dui(t)
dt
= D
ui+1(t) − 2ui(t) + ui−1(t)
(∆x)
2
=: fi(t,u(t)), (7)
for i = 1, . . . , Nx−1. The application of Dirichlet boundary conditions involves overwriting the values
of u0(t) and uNx
(t) with, respectively, u−(t) and u+(t), at appropriate times so, for the purposes of
implementation, it can be assumed that fi(t,u(t)) = 0 when i = 1, Nx, for t ∈ [t
0
, T]. This fully
defines the vector f(t,u(t)) in (1), which is combined with the chosen time-stepping method.
For the forward Euler method (2), the fully discrete equations for i = 1, . . . , Nx − 1, i.e. the interior
points, are given by
u
n+1
i = u
n
i + ∆t D
u
n
i+1 − 2u
n
i + u
n
i−1
(∆x)
2
, (8)
in which u
n
i ≈ u(xi
, tn
). For the trapezoidal rule (3), the PDE is approximated at the interior points
by the discrete equations
u
n+1
i = u
n
i +
∆t D
2
u
n
i+1 − 2u
n
i + u
n
i−1
(∆x)
2
+
∆t D
2
u
n+1
i+1 − 2u
n+1
i + u
n+1
i−1
(∆x)
2
. (9)
The values of u
0
i
are provided by the initial conditions and, for Dirichlet boundary conditions, the
equations (8) and (9) are replaced by u
n+1
0 = u−(t
n+1) and u
n+1
Nx = u+(t
n+1) for n = 0, . . . , Nt − 1.
A Hyperbolic Equation for Advection
The one-dimensional constant advection equation is given by
∂u
∂t + v
∂u
∂x = 0 for (x, t) ∈ [xmin, xmax] × [t
0
, T] , (10)
with the initial condition u(x, t0
) = u
0
(x) for x ∈ [xmin, xmax] and Dirichlet boundary conditions
u(xmin, t) = u−(t) if v ≥ 0 or u(xmax, t) = u+(t) if v < 0, where v is a given real constant and
u− and u+ are given real functions, which may depend on time. One standard finite difference
approximation of the spatial derivative leads to the semi-discretisation
dui(t)
dt
= −v
ui(t) − ui−1(t)
∆x
=: fi(t,u(t)), (11)
for i = 1, . . . , Nx−1. The application of Dirichlet boundary conditions involves overwriting the values
of u0(t) or uNx
(t) (depending on the sign of v) with, respectively, u−(t) or u+(t), at appropriate
times. As with the diffusion equation, for the purposes of implementation, it can be assumed that
fi(t,u(t)) = 0 when i = 1 (for v ≥ 0) or i = Nx (for v < 0) for t ∈ [t
0
, T]. A set of fully discrete
equations, analogous to (8) and (9) can be derived in exactly the same way as they were for the
diffusion equation.
3
Materials Provided
You should familiarise yourself with the additional code which has been provided in the folder
Templates/ to perform some of the tasks related to this coursework.
• The abstract class ODEInterface encapsulates an interface to an ODE of the form (1), when
the system consists of a single equation, i.e. d = 1.
• The classes Vector and Matrix are slightly modifiied versions of the classes used in Unit 10
on Iterative Linear Solvers.
• The class UniformGrid1D encapsulates the information and methods needed for constructing,
storing and extracting the spatial discretisation points xi (often referred to as the spatial grid)
for a one-dimensional problem.
• The method GaussianElimination implements the Gaussian elimination algorithm (without
pivoting) for solving a system of linear equations. It uses the Vector and Matrix classes. The
implementation provided is written for general matrices.
• The files plotter.py are Python files provided to help create the plots requested. You do not
have to use them: you may prefer to use alternative graphics tools.
Coursework Questions
In Templates/ you will find a set of folders, one for each question. The folders contain a small
amount of code (.hpp, .cpp and .py files) as well as empty files, which you must edit for the
coursework. You can use any software you want to produce the plots requested below.
You must keep the folder structure and all file names as they are in the templates: the
folder Q1 in your submission, for instance, should be self-contained, and should include all the code
necessary to compile and reproduce your results for Question 1. The template folders may also serve
as a checklist for your submission. As part of your submission, you may also add files to the folders
(for example, new classes, output files, plotting routines, etc.). If you do so, then write a brief
README.txt file, containing a short description of each new file. When you attempt Question 2, use
a new folder and put all the files necessary to produce your results in it; if needed, copy some files
from Q1 to Q2, etc.
This coursework requires you to implement finite difference algorithms for approximating initial and
initial-boundary value problems (IVPs and IBVPs) in an object-oriented manner, then use them to
approximate a range of linear, time-dependent, ordinary and partial differential equations in one space
dimension. Your design choices and your ability to implement classes according to the principles of
object orientation will be assessed throughout this coursework.
1. In this question you will use the forward Euler method to approximate the scalar IVP
du
dt
= a u + sin t for t ∈ [0, T] with u(0) = 0 , (12)
where a is a given real constant. The exact solution to this problem is
u(t) = e
at − a sin t − cost
a
2 + 1
for t ∈ [0, T] .
4
(a) Write an abstract class AbstractODESolver which contains the following members:
• Protected variables for initial and final times
double mFinalTime ;
double mInitialTime ;
• A protected pointer for the ODE system under consideration
ODEInterface * mpODESystem ;
• A protected variable for the current state u
n
double mpState ;
• A protected variable for the time-step size ∆t
double mStepSize ;
• A pure virtual public method
virtual void Solve () = 0;
• Any other member that you choose to implement.
[5]
(b) Write a class LinearODE derived from ODEInterface which:
• Overrides the pure virtual method ComputeF in order to evaluate the right-hand side
of (12).
• Overrides the virtual method ComputeAnalyticSolution in order to compute the
exact solution of (12).
[5]
(c) Write a class ForwardEulerSolver, derived from AbstractODESolver, with the following
members:
• A public constructor
ForwardEulerSolver ( ODEInterface & anODESystem ,
const double initialState ,
const double initialTime ,
const double finalTime ,
const double stepSize ,
const std :: string outputFileName =" output . dat ",
const int saveGap = 1 ,
const int printGap = 1) ;
in which initialState provides the value of u(t
0
).
• A public solution method
void Solve () ;
which computes {u
n} using the forward Euler method for a generic first-order scalar
IVP of the form (1), saves selected elements of the sequences {t
n}, {u
n} in a file, and
prints on screen an initial header and selected elements of the sequences {t
n}, {u
n}.
The method should save to file every saveGap iterations and print on screen every
printGap iterations.
• Any other member that you choose to implement.
[15]
5
(d) Write and execute a main Driver.cpp file which:
i. Approximates the IVP (12) for a = −1, T = 10, using the forward Euler method with
∆t = 0.05, and outputs the solution to a file.
Use your output to plot the approximate solution {u
n} for t ∈ [0, 10], and provide the
approximate value obtained for u(10).
ii. Approximates the IVP (12) with a = −1, T = 1 using the forward Euler method with
various values of ∆t of your choice, computes the corresponding errors E(∆t), and
saves the sequences {∆tk}, {E(∆tk)} to a file.
Use your output to plot log E(∆t) as a function of log ∆t. Include in your report the
values of ∆t and E(∆t) that you used to produce the plot and a brief explanation of
why your results demonstrate that E(∆t) = O(∆t).
Your choices for computing these errors and presenting this evidence will be assessed.
[10]
2. (a) Modify the class ForwardEulerSolver to create a new class TrapezoidalSolver, also
derived from AbstractODESolver, which computes {u
n} using the trapezoidal method
for a generic linear, scalar, first-order IVP of the form (1).
For the purposes of implementation, it is useful to consider the linear ODE in the form
du
dt
= a u + g(t),
for which the two approximations can be written
u
n+1 = u
n + ∆t F(t
n
, un
) Forward Euler (13)

1 −
∆t
2
a

u
n+1 = u
n +
∆t
2
F(t
n
, un
) + ∆t
2
g(t
n+1) Trapezoidal (14)
in which the constant a and the functions F and g depend only on the ODE, not the
discretisation.
You should modify the classes ODEInterface and LinearODE to ensure that your code
retains its encapsulation of the ODE system in this special case. You do not need to
redesign the code to enable it to solve more general ODEs.
[5]
(b) Write and execute a main Driver.cpp file which:
i. Approximates the IVP (12) for a = −1, T = 10, using the trapezoidal method with
∆t = 0.05, and outputs the solution to a file.
Use your output to plot the approximate solution {u
n} for t ∈ [0, 10], and provide the
approximate value obtained for u(10).
ii. Approximates the IVP (12) with a = −1, T = 1 using the trapezoidal method with
various values of ∆t of your choice, computes the corresponding errors E(∆t) and saves
the sequences {∆tk}, {E(∆tk)} to a file.
Use your output to plot log E(∆t) as a function of log ∆t and determine the order of
the method, i.e. the value of p for which E(∆t) = O((∆t)
p
). Include in your report
the values of ∆t and E(∆t) that you used to produce the plot and a brief explanation
of how you determined the value of p.
Is the trapezoidal method better or worse than the forward Euler method for approximating the ODE (12)? Provide a brief justification for your answer.
[5]
6
3. This question concerns the approximation of the one-dimensional diffusion equation using the
methods described in the background material. From the discrete forms (8) and (9), it can be
seen that, for this PDE, the approximations can be written as
u
n+1 = u
n + ∆t F(u
n
) Forward Euler (15)

I −
∆t
2
A

u
n+1 = u
n +
∆t
2
F(u
n
) Trapezoidal (16)
in which the matrix A and the vector F depend only on the discrete form of the spatial operator
Lu. The boundary equations are treated differently from the interior equations because the
Dirichlet boundary conditions are used to overwrite the values of u
n+1
0
and u
n+1
Nx
, so the first
and last rows of A and F need to be defined accordingly.
Note: A good first step for this question would be to copy the relevant code from Q1 and Q2
in to a new folder, convert all double variables used to store values of the approximate solution
u and right-hand side F to Vector variables of length 1, and check that your code still gives
the same answers.
(a) Modify the abstract class AbstractODESolver and the derived classes for the methods
ForwardEulerSolver and TrapezoidalSolver so that the state u(t
n
) is stored in an
object of type Vector. For example, the constructor of the class ForwardEulerSolver
will now take the form
ForwardEulerSolver ( ODEInterface & anODESystem ,
const Vector & initialState ,
const double initialTime ,
const double finalTime ,
const double stepSize ,
const std :: string outputFileName =" output . dat ",
const int saveGap = 1 ,
const int printGap = 1) ;
and the Solve method will have to compute, save and print values of u
n+1 ∈ R
Nx+1
.
• Modify your code so that it computes the discrete norm of the error in the approximation
at the end of the simulation, when t = T, as defined by (5).
• Modify the classes ForwardEulerSolver and TrapezoidalSolver so that they approximate the system of ODEs obtained from the semi-discretisation of a PDE of the
form (4), including the application of Dirichlet boundary conditions.
The trapezoidal method requires the solution of a linear system of equations at each
time-step. You should do this using the method GaussianElimination, which has
been provided. When you are confident that your code is working correctly, you should
modify this method so that it takes full advantage of the tridiagonal structure which the
matrix A has in these cases. Include in your report a brief description of the changes
you have made and the reasons for them.
[10]
(b) Write a class Diffusion, derived from ODEInterface, with the following members:
• A method overriding the method ComputeF of ODEInterface
void ComputeF ( const double t , const Vector & u ,
Vector & f ) const ;
which computes and stores in f the Nx + 1 values of F.
7
• A method overriding the method ComputeAnalyticSolution of ODEInterface
void ComputeAnalyticSolution ( const double t ,
Vector & u ) const ;
which computes the vector of exact solution values u(t) at the points xi
.
• A new method
void ApplyDirichlet ( const double t , Vector & u ) ;
which overwrites the boundary values u0(t) and uNmax (t) of the vector u(t) using the
Dirichlet boundary conditions at the appropriate time level.
• A new method
void ComputeMatrix ( Matrix & A ) const ;
which computes the matrix A.
• Any other method that you choose to implement.
You will need to modify the abstract class ODEInterface to ensure that its design is
consistent with that of the class Diffusion.
[10]
(c) A simple exact solution to the one-dimensional diffusion equation (6) on the interval
[xmin, xmax] = [0, 1], with Dirichlet boundary conditions u+(t) = u−(t) = 0, is
u(x, t) = e−Dπ2
t
sin(πx). (17)
Write and execute a main Driver.cpp file which:
i. Approximates the diffusion equation (6) with D = 0.01 on the interval t ∈ [0, 10] with
initial conditions generated from (17) when t
0 = 0, using the forward Euler method
with Nt = 1000 time-steps and Nx = 100 space steps.
Use your output to plot the initial and final approximate solutions, u
0
and u
Nt
, on the
same graph, and provide the value of the error (5) at the end of the simulation, when
t = 10.
ii. Approximates the diffusion equation (6) with D = 0.01 on the interval t ∈ [0, 10] with
initial conditions generated from (17) when t
0 = 0, using the forward Euler method
with Nx = 100, 200, 400, 800, 1600, space steps. You should use Nt = 1000 with
Nx = 100 and then produce two different sets of results:
• As Nx is increased, increase Nt so that Nt ∝ Nx.
• As Nx is increased, increase Nt so that Nt ∝ Nx
2
.
Use your output to plot log E(∆x, ∆t) as a function of log ∆x in both cases. Use
your results to try to determine the order of the method, p. Include in your report
the values of E(∆x, ∆t) that you used to produce the plots, with a brief explanation
of the behaviour of the errors as Nx and Nt are increased and how you used them to
determine a value for p. Compare this value of p with that observed for the forward
Euler method in Q1(d) and explain any difference between them.
iii. Repeats exercises i. and ii. using the trapezoidal method.
In addition to the plots, output and discussion requested in these exercises, include
in your report a brief explanation of any significant differences between the results
obtained for the two time-stepping methods. Which time-stepping method would you
advise a user to choose for this application? You should consider both stability and
accuracy when determining your answer and briefly justify your choice. You might
consider simulations with other values of Nt and Nx for supporting evidence.
[10]
8
4. This question concerns the approximation of the one-dimensional advection equation using the
methods described in the background material. As with the diffusion equation it is possible to
write the approximations in the forms (15) and (16), though the details are different for the
matrix A, the vector F and the Dirichlet boundary conditions.
(a) Modify the class Diffusion to create a new class Advection, also derived from the abstract class ODEInterface, which encapsulates the system of ODEs which is derived from
the approximation of the one-dimensional advection equation given by (11).
[5]
(b) A simple exact solution to the one-dimensional advection equation (10) on the interval
[xmin, xmax] = [0, 4], with Dirichlet boundary condition u(xmin) = 0 (for v > 0), is
u(x, t) = 
cos2
(π(x − vt)) if x − vt ∈ [0.5, 1.5]
0 otherwise.
(18)
Write and execute a main Driver.cpp file which:
i. Approximates the advection equation (10) with v = 2 on the interval t ∈ [0, 1] with
initial conditions generated from (18) when t
0 = 0, using both the forward Euler and
trapezoidal methods with Nt = 1000 time-steps and Nx = 100 space steps.
Use your output to plot the initial and final approximations, u
0
and u
Nt
, on the same
graph (one graph for each method), and provide the value of the error (5) at the end
of the simulation, when t = 1.
ii. Repeats the remaining exercises of Q3(c)ii. and Q3(c)iii. using the same values of Nx
and Nt as were used there.
[5]
(c) The advection equation is generally considered to be more difficult to approximate than the
diffusion equation.
Investigate the behaviour of the methods you have already implemented in the case where
v = −2 (for which the boundary condition is u(xmax) = 0). You do not have to carry out
the same simulations as in part (b) but you should include a brief discussion of the stability
and accuracy of the methods, with appropriate supporting evidence.
Modify your code so that the semi-discretisation in Equation (11) is replaced by
dui(t)
dt
= −v
ui+1(t) − ui−1(t)
2∆x
, (19)
and investigate the behaviour of both time-stepping methods when v = 2. Note that you
will need to use Equation (11) instead of Equation (19) when i = Nx. You do not have to
carry out the same simulations as in part (b) but you should include a brief discussion of
the stability and accuracy of the methods, with appropriate supporting evidence.
[5]
5. This question concerns the approximation of the Black-Scholes equation,
∂u
∂t +
1
2
σ
2x
2

2u
∂x2
+ rx
∂u
∂x − ru = 0 for (x, t) ∈ [xmin, xmax] × [t
0
, T] , (20)
with the final condition u(T, x) = max(x − K, 0) for x ∈ [xmin, xmax] and Dirichlet boundary
conditions u(xmin, t) = 0 and u(xmax, t) = x − Ke−r(T −t)
, where t is time, x is stock price, σ
is volatility, r is risk-free interest rate and K is strike price.
9
This PDE is to be approximated using the semi-discretisation given by
dui(t)
dt
= −
1
2
σ
2xi
2 ui+1(t) − 2ui(t) + ui−1(t)
(∆x)
2
− rxi
ui+1(t) − ui−1(t)
2∆x
+ rui(t), (21)
for i = 1, . . . , Nx − 1. Note that the coefficients of the derivatives depend on x, and one of the
Dirichlet boundary conditions is nonzero and time-dependent.
(a) Modify the class Diffusion (or Advection) to create a new class BlackScholes, also
derived from the abstract class ODEInterface, which encapsulates the system of ODEs
which is derived from the semi-discretisation (21).
This equation is solved backwards in time and you will need to work out how to do this
within the framework you have implemented. In your report, you should briefly describe
how you wrote your code so that the forward Euler and trapezoidal methods step backwards
in time instead of forwards in time.
[5]
(b) Write and execute a main Driver.cpp file which approximates the Black-Scholes equation
(20) with K = 100, r = 0.15, σ = 0.05, on the interval (x, t) ∈ [50, 150] × [0, 1] with
the final condition, given below Equation (20), when T = 1. Use both the forward Euler
method and the trapezoidal method with Nt = 10000 time-steps and Nx = 500 space
steps. You do not have to compute the approximation error in this question.
Use your output to plot the initial and final approximate solutions, u
0
and u
Nt
, on the
same graph (one graph for each method). Which time-stepping method would you advise
a user to choose for this application? You should run additional numerical simulations,
with different values of Nt and Nx, to help you to decide, and use them to justify your
choice. You should also include a brief discussion of why it is appropriate to use the centred
difference approximation for the first derivative in (21), using evidence from the numerical
simulations carried out in previous questions to support your argument.
[5]
The output requested in Questions 1d, 2b, 3c, 4b, 4c and 5b should be included in your submission,
along with any other discussion requested, in the format provided by the solution template file.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CSC345編程代寫、代做Python語言程序
  • 下一篇:代寫選股公式 代做公式指標 通達信選股
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          亚洲欧美国产制服动漫| 国内自拍亚洲| 久久视频在线免费观看| 亚洲国产欧美精品| 国产欧美日韩亚洲一区二区三区| 蘑菇福利视频一区播放| 欧美一区二区成人| 一本色道久久综合狠狠躁篇的优点| 国产一区二区久久| 国产精品高潮久久| 欧美日韩成人一区二区三区| 久久久久在线观看| 欧美一级欧美一级在线播放| 在线亚洲激情| 日韩一级片网址| 亚洲国产一区二区a毛片| 国产亚洲一区二区在线观看| 国产精品久久久久一区二区| 欧美日韩第一区| 欧美福利电影网| 免费亚洲一区| 另类图片国产| 欧美va天堂在线| 欧美成人a∨高清免费观看| 久久久另类综合| 久久国产精品99国产| 欧美在线欧美在线| 欧美一级淫片播放口| 香蕉久久a毛片| 欧美一区二区日韩一区二区| 欧美淫片网站| 久久精品中文| 欧美插天视频在线播放| 欧美高清不卡在线| 欧美日韩国产91| 欧美日韩视频| 国产精品视频大全| 国内揄拍国内精品少妇国语| 一区二区自拍| 亚洲精品在线一区二区| 亚洲香蕉成视频在线观看 | 国产精品久久久对白| 欧美日韩国产欧美日美国产精品| 欧美日韩成人综合| 国产欧美短视频| 一区二区三区在线观看国产| 亚洲黄色小视频| 亚洲一区在线播放| 久久久亚洲国产美女国产盗摄| 麻豆精品传媒视频| 国产精品激情电影| 国内精品伊人久久久久av一坑| 亚洲电影第1页| 一区二区三区.www| 日韩天堂在线观看| 亚洲图中文字幕| 久久免费国产精品1| 欧美精品亚洲| 国产日韩欧美亚洲一区| 亚洲经典在线| 久久成人18免费网站| 欧美精品手机在线| 国产精品一区一区三区| 亚洲黄色免费网站| 久久精品理论片| 欧美日韩综合另类| 在线观看91精品国产麻豆| 一区二区三区日韩精品视频| 久久久综合视频| 国产欧美日韩三区| 一本色道久久综合亚洲精品不| 久久精品人人做人人爽电影蜜月| 欧美日韩一区二区在线播放| 一区一区视频| 久久久夜精品| 国产精品免费网站| 一本色道久久88亚洲综合88| 免费观看30秒视频久久| 狠狠色狠狠色综合| 欧美影片第一页| 国产精品另类一区| 一区二区不卡在线视频 午夜欧美不卡在| 久久久久久久一区二区三区| 国产精品亚洲综合久久| 一区二区三区毛片| 欧美另类一区二区三区| 亚洲福利视频一区二区| 久久综合精品一区| 一区二区在线不卡| 久久精品一二三| 红桃视频国产一区| 久久国产精品电影| 国产亚洲欧美一区二区三区| 性娇小13――14欧美| 国产精品a久久久久久| 亚洲一本大道在线| 国产精品视频999| 午夜精品视频网站| 国产欧美精品在线| 久久av一区二区三区漫画| 国产精品一二三视频| 欧美在线国产| 永久91嫩草亚洲精品人人| 免费看亚洲片| 99热在线精品观看| 国产精品s色| 性欧美18~19sex高清播放| 国产日韩在线看| 久久人人爽人人爽| 亚洲乱码国产乱码精品精可以看| 欧美精品一区二区三区视频| 日韩亚洲精品电影| 国产乱子伦一区二区三区国色天香 | 另类天堂av| 91久久精品国产| 欧美性视频网站| 欧美影片第一页| 亚洲人线精品午夜| 国产精品午夜国产小视频| 久久精品成人| 一区二区三区|亚洲午夜| 国产精品美女久久久| 蜜桃久久av一区| 亚洲一区二区精品视频| 黄色日韩在线| 欧美视频在线免费| 六月婷婷久久| 亚洲欧美中日韩| 亚洲激情校园春色| 国产一区二区日韩| 欧美日韩国产综合网| 久久精品日产第一区二区三区 | 久久在线观看视频| 一区二区三区黄色| 激情六月综合| 国产精品理论片在线观看| 欧美第一黄色网| 久久国内精品自在自线400部| 亚洲精品免费电影| 一区在线影院| 国产精品久久久久久久app| 老司机久久99久久精品播放免费| 亚洲一区二区三区免费视频| 亚洲高清不卡一区| 国内精品模特av私拍在线观看| 欧美日韩免费精品| 欧美激情麻豆| 欧美ed2k| 蜜桃av噜噜一区| 久久久亚洲人| 久久精品视频免费播放| 亚洲欧美三级在线| 在线一区二区三区四区| 亚洲激情另类| 亚洲电影在线看| 精品999在线播放| 国产综合精品| 精品91在线| 激情伊人五月天久久综合| 国产一区日韩一区| 国产日韩欧美在线播放| 国产麻豆91精品| 国产精一区二区三区| 国产九九精品| 黑人操亚洲美女惩罚| 国户精品久久久久久久久久久不卡| 国产精品日韩精品欧美精品| 国产精品普通话对白| 国产精品久久久久久亚洲毛片 | 国产精品每日更新在线播放网址| 欧美日韩hd| 国产精品v亚洲精品v日韩精品| 欧美吻胸吃奶大尺度电影| 欧美精品手机在线| 欧美无砖砖区免费| 国产精品视频xxx| 国内精品久久久久影院 日本资源 国内精品久久久久伊人av | 亚洲网在线观看| 亚洲综合电影| 久久福利资源站| 老司机午夜免费精品视频| 欧美精品18+| 欧美日韩一区三区四区| 国产麻豆视频精品| 亚洲国产欧美不卡在线观看| 亚洲精品中文在线| 亚洲综合电影| 久久视频一区二区| 欧美激情综合亚洲一二区| 欧美天天视频| 一区二区三区在线观看欧美| 亚洲理伦在线| 欧美一级一区| 欧美日韩国产999| 国产精品一区免费观看| 最新国产精品拍自在线播放| 亚洲一区区二区| 欧美国产高清| 国产区亚洲区欧美区| 亚洲日本在线观看|