合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        代寫CS536、代做C/C++,Java編程
        代寫CS536、代做C/C++,Java編程

        時間:2025-02-20  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CS536 Assignment 3
        Due: Feb 28th, 2025
        Early Bird Due: Feb 26th, 2025
        (Ethics: Any behavior on any homework or exam that could be considered copying or cheating will result in an immediate zero on the assignment 
        for all parties involved. See the IIT Code of Academic Honesty,)
        1. Remember that Σ is the collection of all well-formed states, and Σ⊥ = Σ ∪ {⊥}. Decide true or false for each of 
        the following statements, justify your answers briefly.
        a. If 𝜎(𝑝) =⊥, then ⊭ ¬𝑝. 
        b. Let 𝜏 ∈ Σ⊥, then 𝜏 ⊨ 𝑝 or 𝜏 ⊨ ¬𝑝.
        c. Let Σ0 ⊆ Σ and Σ0 ⊨ 𝑝, also let 𝜏 ⊨ 𝑝; then Σ0 ∪ {𝜏} ⊨ 𝑝.
        d. ∅ ⊨ 𝑝 and ∅ ⊨ ¬𝑝 (∅ represents an empty collection of states).
        e. Let Σ0 ⊂ Σ, then Σ0 ⊨ 𝑥 > 1 or Σ0 ⊨ 𝑥 ≤ 1.
        2. Calculate denotational semantics for the following nondeterministic programs.
        a. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
        𝑥/𝑦 𝐟𝐢, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐼𝐹, 𝜎1) and show your work.
        b. Let 𝐼𝐹 ≡ 𝐢𝐟 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
        𝑥/𝑦 𝐟𝐢, and let 𝜎2
        (𝑥) = 𝜎2
        (𝑦) = 1. Calculate 𝑀(𝐼𝐹, 𝜎2) and show your work.
        c. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
        𝑥/𝑦 𝐨𝐝, and let 𝜎1 = {𝑥 = 3, 𝑦 = 1}. Calculate 𝑀(𝐷𝑂, 𝜎1) and show your work.
        d. Let 𝐷𝑂 ≡ 𝐝𝐨 𝑥 > 𝑦 → 𝑥 ≔ 𝑥 − 1 ◻ 𝑥 > 𝑦 → 𝑦 ≔ 𝑦 + 1 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔ 𝑦/𝑥 ◻ 𝑥 + 𝑦 = 4 → 𝑥 ≔
        𝑥/𝑦 𝐨𝐝, and let 𝜎2
        (𝑥) = 𝜎2
        (𝑦) = 1. Calculate 𝑀(𝐷𝑂, 𝜎2) and show your work.
        3. Let 𝑏 be an array of size 𝑛 ≥ 1, and ∀0 ≤ 𝑖 < 𝑛. 𝑏[𝑖] = 0 ∨ 𝑏[𝑖] = 1. Decide which number (0 𝑜𝑟 1) is the 
        majority in 𝑏 without counting their quantities. 
        Write a program named 𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 in our language that can solve the above problem and bind the majority 
        among 0 and 1 to variable 𝑚𝑎𝑗𝑜𝑟. You can assume that 𝑏 is written in the memory state; and to simplify the 
        question, we artificially define 𝑏[𝑛] = 100, so you don’t need to worry about a possible runtime error when the 
        array index reaches 𝑛. Your program doesn’t have to be deterministic. Be careful of the grammar in our 
        programming language. 
        Here are some hints: 
        1) We can use the following linear-search-like algorithm: scan the array 𝑏 to pair up each 0 with a 1. Once we 
        have some 1′𝑠 left over, then 1 is the majority; once we have some 0′𝑠 left over, then 0 is the majority; if 
        we can pair up all numbers, then either of them can be the majority. 
        2) A student named Jason wrote a partial solution that could be useful to solve the above problem:
        𝐽 ≡ 𝐝𝐨 𝑏[𝑘0
        ] = 1 → 𝑘0 ≔ 𝑘0 +1 ◻ 𝑏[𝑘1
        ] = 0 → 𝑘1 ≔ 𝑘1 + 1 𝐨𝐝 
        Consider 𝑘0 and 𝑘1 as pointers for number 0 and 1 respectively. What program 𝐽 does is to find the next 
        𝑘0 and 𝑘1
        such that 𝑏[𝑘0
        ] = 0 and 𝑏[𝑘1
        ] = 1. You can use 𝐽 inside of your program. 
        4. Decide true or false for each of the following statements, justify your answers briefly.
        a. If 𝑀(𝑆, 𝜎) contains exactly one state, then 𝑆 is a deterministic statement.
        b. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊨ 𝑝.
        c. If 𝜎 ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭ 𝑝.
        d. If 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, then 𝑀(𝑆, 𝜎) ⊨ 𝑞.
        e. If 𝜎 ⊭ {𝑝} 𝑆 {𝑞}, then 𝜎 ⊭𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}.
        5. Answer the following questions about possible values of variable 𝑥 in a state. Justify your answer briefly.
        a. Let ⊥𝑒∉ 𝑀(𝑆, 𝜎), where 𝑆 ≡ 𝑥 ∶= 𝑠𝑞𝑟𝑡(𝑥) / 𝑏[𝑥] and 𝜎(𝑏) = (3, 0,−2, 4). What are the possible values 
        of 𝜎(𝑥)?
        b. Let 𝜎 ⊨ {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 −2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
        c. Let 𝜎 ⊨𝑡𝑜𝑡 {𝑥 ≠ 0} 𝐰𝐡𝐢𝐥𝐞 𝑥 ≠ 0 𝐝𝐨 𝑥 ≔ 𝑥 − 2 𝐨𝐝 {𝑥 < 0}, what are the possible values of 𝜎(𝑥)?
        6. Let predicate function 𝑃(𝑘, 𝑠) ≡ 𝑠
        2 ≤ 𝑘 ≤ (𝑠 + 1)
        2
        . For each of the following triples, decide whether it is valid 
        under total correctness, justify your answer briefly. 
        a. {𝑃(𝑘, 𝑠 +1)} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑠)}
        b. {𝑃(𝑘, 𝑠)} 𝑠 ≔ 𝑠 +1 {𝑃(𝑘, 𝑠 + 1)}
        c. {𝑃(𝑘, 𝑠) ∧ 𝑠 < 0} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
        d. {𝑃(𝑘, 𝑠) ∧ 𝑠 = 𝑥} 𝑠 ≔ 𝑠 + 1 {𝑃(𝑘, 𝑥)}
        e. {𝑃(𝑘 +1, 𝑠 + 1)} 𝑠 ≔ 𝑠 + 1; 𝑘 ≔ 𝑘 + 1 {𝑃(𝑘, 𝑠)}
        7. Let 𝜎 ⊨ {𝑝1
        } 𝑆 {𝑞1
        } and 𝜎 ⊨ {𝑝2
        } 𝑆 {𝑞2
        }. Decide whether 𝜎 necessarily satisfies the following triples under 
        partial correctness, justify your answer briefly.
        a. {𝑝1 ∧ 𝑝2
        } 𝑆 {𝑞1 ∧ 𝑞2
        }
        b. {𝑝1 ∨ 𝑝2
        } 𝑆 {𝑞1 ∨ 𝑞2
        }
        c. {𝑝1 ∨ 𝑝2
        } 𝑆 {𝑞1 ∧ 𝑞2
        }
        8. Let ⊨𝑡𝑜𝑡 {𝑝1
        } 𝑆 {𝑞1
        } and ⊨𝑡𝑜𝑡 {𝑝2
        } 𝑆 {𝑞2
        }. Decide whether the following triples are valid under total
        correctness, justify your answer briefly. 
        a. {𝑝1 ∧ 𝑝2
        } 𝑆 {𝑞1 ∧ 𝑞2
        }
        b. {𝑝1 ∧ 𝑝2
        } 𝑆 {𝑞1 ∨ 𝑞2
        }
        c. {𝑝2
        } 𝑆 {𝑞1 → 𝑞2
        }
        Hints for questions 7 and 8:
        1) Remember that 𝜎 ⊨ 𝑝 ∧ 𝑞 means “𝜎 ⊨ 𝑝 and 𝜎 ⊨ 𝑞”; 𝜎 ⊨ 𝑝 ∨ 𝑞 means “𝜎 ⊨ 𝑝 or 𝜎 ⊨ 𝑞”.
        2) To prove 𝜎 ⊨ {𝑝} 𝑆 {𝑞}, you can prove that “if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎)−⊥ ⊨ 𝑞”.
        3) To prove ⊨𝑡𝑜𝑡 {𝑝} 𝑆 {𝑞}, you can prove that “for any state 𝜎, if 𝜎 ⊨ 𝑝,then 𝑀(𝑆, 𝜎) ⊨ 𝑞”.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



         

        掃一掃在手機打開當前頁
      1. 上一篇:菜鳥錢包全國客服電話-菜鳥錢包24小時人工服務熱線
      2. 下一篇:代寫CMSC 150、代做Python設計程序
      3. ·代寫COMP S311、代做Java編程語言
      4. ·代做COMP2012J、java編程語言代寫
      5. ·ITP4206代做、代寫c/c++,Java編程
      6. ·CS425FZ代做、代寫Java編程設計
      7. ·代寫COMP3013、代做Java編程設計
      8. ·代寫COMP 250、代做java編程語言
      9. ·代寫6570USST、代做c/c++,Java編程
      10. ·PROG2004代寫、代做Java編程設計
      11. ·代寫ISIT312 、代做Java編程語言
      12. ·代寫INFO1113、Java編程設計代做
      13. 合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      14. 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 国产一区二区三区在线看片| 国产激情无码一区二区| 国产中文字幕一区| 国产精品无码一区二区在线观| 亚洲熟女www一区二区三区| 伊人色综合视频一区二区三区 | 国产无码一区二区在线| 国产午夜精品一区二区| 亚洲福利精品一区二区三区| 国产一区二区三区高清视频 | 亚洲啪啪综合AV一区| 亚洲一区二区三区日本久久九| 亚洲va乱码一区二区三区| 人妻少妇精品视频三区二区一区 | 国产情侣一区二区三区| 日韩精品视频一区二区三区 | 亚洲国模精品一区| 亚洲福利一区二区| 国产MD视频一区二区三区| 久久久久久综合一区中文字幕| 中文字幕日韩丝袜一区| 国产一区二区在线| 波多野结衣免费一区视频| 波多野结衣一区二区三区| www亚洲精品少妇裸乳一区二区| 国产午夜精品一区二区三区 | 国产在线精品一区二区三区不卡 | 无码人妻一区二区三区一| 蜜桃视频一区二区| 亚洲一区二区三区深夜天堂| 国产99精品一区二区三区免费| 亚洲国产系列一区二区三区 | 精品国产一区二区三区香蕉| 精品亚洲一区二区三区在线观看| 精品国产一区二区三区不卡| 国产福利电影一区二区三区,亚洲国模精品一区 | 亚洲无线码在线一区观看| 国产在线无码视频一区二区三区| 韩国福利一区二区美女视频| 国产乱码伦精品一区二区三区麻豆 | 国产在线无码视频一区|